化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 287-293.doi: 10.11949/0438-1157.20190464

• 催化、动力学与反应器 • 上一篇    下一篇

微波协同离子液体催化合成柠檬酸三丁酯

杨铃1(),郑成2(),李镇明2   

  1. 1. 广东轻工职业技术学院,广东 广州 510300
    2. 广州大学精细化工研究所,广东 广州 510006
  • 收稿日期:2019-05-05 修回日期:2019-05-08 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 郑成 E-mail:51497074@qq.com;zhengcheng5512@163.com
  • 作者简介:杨铃(1978—),女,硕士研究生,副教授,51497074@qq.com
  • 基金资助:
    国家自然科学基金项目(21878058);广东轻工职业技术学院成果培育与孵化项目(KJFH002)

Microwave assisted synthesis of tributyl citrate by ionic liquids

Ling YANG1(),Cheng ZHENG2(),Zhenming LI2   

  1. 1. Guangdong Industry Technological College,Guangzhou 510300,Guangdong, China
    2. Institute of Fine Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
  • Received:2019-05-05 Revised:2019-05-08 Online:2019-09-05 Published:2019-11-07
  • Contact: Cheng ZHENG E-mail:51497074@qq.com;zhengcheng5512@163.com

摘要:

酯化反应是重要有机合成反应之一,广泛应用于药物、材料、食品和香料等生产中。传统方法合成酯类具有反应时间长、产率低、污染大、副反应多及后处理困难等缺点;微波-离子液体合成法融合微波及离子液体两者优势,具有快速、高效、选择性好、产物易分离和对环境友好等特点。采用离子液体1-丁基-3-甲基咪唑硫酸氢盐作为催化剂,通过微波反应技术合成柠檬酸三丁酯。考察了反应物料醇酸比、催化剂用量、反应时间对反应最终转化率的影响,并通过正交实验对微波合成的工艺条件进行优化设计,得出离子液体催化下微波合成的最佳条件为:催化剂用量15%,反应物料醇酸比6.2∶1,微波反应时间4 h,反应温度118℃,微波功率600 W,转化率为71.78%。

关键词: 微波, 离子液体, 酯化, 优化设计

Abstract:

Esterification is one of the most important organic reactions and widely used in medicine, material, food and perfume etc. The traditional synthesis process of esters have the disadvantages such as long reaction time, low yield, serious pollution, side reaction and difficult separation. Microwave assisted synthesis of esters catalysized by ionic liquids have the advantages such as less time, efficiency, convenient separation and safety. The ionic liquid 1-butyl-3-methylimidazolium hydrogen was used as the catalytic to synthesize tributyl citrate. The process conditions of catalytic esterification of TBC were studied by microwave reaction technology. The effects of alkyd ratio, amount of catalyst and reaction time on the final conversion of reaction were investigated. The process conditions of microwave synthesis of TBC were optimized by orthogonal design, and microwave synthesis under the catalysis of ionic liquid was obtained. The optimum conditions are as follows: the amount of catalyst is 15%, the reaction material alkyd ratio is 6.2∶1, the microwave reaction time is 4 h, the reaction temperature is 118℃, the microwave power is 600 W, and the conversion rate is 71.78%. The results of orthogonal analysis showed that the catalyst dosage had the greatest influence on the conversion rate and the reaction time was the second, and the influence of the alkyd ratio of the reaction material was relatively small. Compared with conventional heating and microwave radiation, the results show that microwave irradiation can effectively shorten the reaction time and reduce the reaction time from 7 h to 4 h. The reaction product was confirmed by Fourier transform infrared spectroscopy (FTIR), which confirmed that the target product was three butyl citrate. Viscosity analysis and other tests, all data are up to the standard.

Key words: microwave, ionic liquids, esterification, optimal design

中图分类号: 

  • TQ 028.8

图1

1-丁基-3-甲基咪唑硫酸氢盐用量对反应转化率的影响"

图2

醇酸比对反应转化率的影响"

图3

温度对反应转化率的影响"

图4

时间对反应转化率的影响"

表1

正交表设计"

水平

A

(醇酸比)

B

(催化剂用量)

C

(反应时间)

15.8∶113%2 h
26∶115%3 h
36.2∶117%4 h

表2

正交实验结果记录及数据处理"

实验号ABC转化率/%
12(6∶1)1(13%)2(3 h)55.46
22(6∶1)2(15%)3(4 h)70.82
32(6∶1)3(17%)1(2 h)58.55
41(5.8∶1)1(13%)1(2 h)59.36
51(5.8∶1)2(15%)2(3 h)70.54
61(5.8∶1)3(17%)3(4 h)54.19
73(6.2∶1)1(13%)3(4 h)68.08
83(6.2∶1)2(15%)1(2 h)60.37
93(6.2∶1)3(17%)2(3 h)62.80
K10.61360.60970.5943
K20.61610.67240.6293
K30.63750.58510.6436
R0.02390.090.0494

表3

反应产物黏度测试记录"

样品标号扭矩/%黏度/(mPa·s)平均值/(mPa·s)
149.22930
50.830
51.730
251.83030
51.930
51.230

图5

反应产物红外光谱图"

图6

产品多次红外光谱对比"

图7

反应原料样液红外光谱图"

图8

原料与反应产物的红外光谱对照"

1 ZhaoY J, SaldañaM D A. Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology[J]. The Journal of Supercritical Fluids, 2019, 143: 97-106.
2 IbarraV G, de QuirósA R B, LosadaP P, et al. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products[J]. Analytical and Bioanalytical Chemistry, 2018, 410(16): 3789-3803.
3 李志平, 吴雄杰, 赵康, 等.食品塑料包装材料中常见有毒有害单体介绍[J]. 塑料包装, 2016, 26(5): 56-60.
LiZ P, WuX J, ZhaoK, et al. The introduction of main harmful monomer for plastic materials for food packaging[J]. Plastics Packaging, 2016, 26(5): 56-60.
4 许勇, 于建, 韩晶, 等.气相色谱-质谱测定化妆品中21种塑化剂的含量[J]. 中国卫生检验杂志, 2014, 11(22): 3211-3216.
XuY, YuJ, HanJ, et al. Determination of phthalate acid esters in cosmetic by GC-MS[J]. Chin. J. Health Lab. Tec., 2014, 11(22): 3211-3216.
5 蔡霞, 黄艳婷, 符美燕, 等. HPLC法测定化妆品中 12 种邻苯二甲酸酯类化合物[J]. 日用化学工业, 2018, 48(7): 415-418.
CaiX, HuangY T, FuM Y, et al. Determination of 12 kinds of phthalates in cosmetics by HPLC[J]. China Surfactant Detergent & Cosmetics, 2018, 48(7): 415-418.
6 张丽霞, 蒋莎, 钟玉心, 等. GC-MS检测玩具原材料中塑化剂的不确定度评定[J]. 广东化工, 2018, 45(378): 180-182.
ZhangL X, JiangS, ZhongY X, et al. Evaluation of the uncertainty in measurement of the plasticizer in the raw by GC-MS[J]. Guangdong Chemical Industry, 2018, 45(378): 180-182.
7 StringerR, LabunskaI, SantilloD. Concentrations of phthalate esters and identification of other additives in PVC children’s toys[J]. Environmental Science and Pollution Research, 2000, 7(1): 27-36.
8 魏志华.全球法规背景与我国增塑剂行业[J]. 精细与专用化学品, 2012, 20(5): 9-12.
WeiZ H. Background of global legislation and China's plasticizer industry[J]. Fine and Specialty Chemicals, 2012, 20(5): 9-12.
9 苏会波, 林海龙, 郝小明, 等. 环保增塑剂柠檬酸三丁酯的研究、应用和市场现状[J]. 化工新型材料, 2013, 41(10): 15-17.
SuH B, LinH L, HaoX M, et al. Research, application and market status of nontoxic, environmental plasticizer-tributylcitrate[J]. New Chemical Materials, 2013, 41(10): 15-17.
10 KappeC O. Controlled microwave heating in modern organic synthesis [J]. Angewandte Chemie International Edition, 2004, 43(46): 6250-6284.
11 KusurkarR S, NaikN H, NaikP N. ChemInform abstract: combination of AlCl3, ionic liquid, and microwaves: an efficient method for dehydration and 1,3-dipolar cycloaddition: an unusual observation in the presence of acrylonitrile[J]. Synthetic Communications, 2008, 39(45): 1952-1957.
12 MallakpourS, TaghaviM. Efficient and rapid synthesis of optically active polyamides in the presence of tetrabutylammonium bromide as ionic liquids under microwave irradiation[J]. Journal of Applied Polymer Science, 2008, 109(6): 3603-3612.
13 陈荣圻. 邻苯二甲酸酯及其环保增塑剂的代用品开发[J]. 印染助剂, 2011, 39(12): 26-35.
ChenR Q. Development of phthalate and environmental friendly plasticizer substitute[J]. Textile Auxiliaries, 2011, 39(12): 26-35.
14 丁斌, 韩运华, 宋培文. 柠檬酸三丁酯、乙酰柠檬酸三丁酯合成工艺的研究[J]. 塑料工业, 2003, 31(7): 4-7.
DingB, HanY H, SongP W. Study of synthesis technology for tributyl citrate and tributyl acetylcitrate[J]. China Plastice Industry, 2003, 31(7): 4-7.
15 孟平蕊, 李良波, 杨春霞, 等. 对甲苯磺酸催化合成柠檬酸三丁酯[J]. 合成树脂及塑料, 2002, 19(2): 16-18.
MengP R, LiL B, YangC X, et al. Synthesis of TBC with p-toluene sulfonic acid catalyst[J]. China Synthetic Resin and Plastics, 2002, 19(2): 16-18.
16 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺[J]. 化工学报, 2016, 67(S2): 231-243.
LingH, ZhengC, MaoT Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylglycerols using response surface methodology[J]. CIESC Journal, 2016, 67(S2): 231-243.
17 HaS H, AnhT, KooY M. Optimization of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids by response surface methodology[J]. Bioprocess and Biosystems Engineering, 2013, 36(6): 799-807.
18 ShindeS D, YadavG D. Process intensification of immobilized lipase catalysis by microwave irradiation in the synthesis of 4-chloro-2-methylphenoxyacetic acid (MCPA) esters[J]. Biochemical Engineering Journal, 2014, 5: 96-102.
19 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3177.
WeiY, ZhengC, MaoT Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt [J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3177.
20 LiJ Y, ZhangQ S, WangY, et al. Synthesis and properties of organosilicon quaternary salts surfactants[J]. Journal of Surfactants and Detergents, 2012, (3): 339-344.
21 练萍, 李雷, 薛君, 等. 微波辐射下稀土固体超强酸催化合成蔗糖棕榈酸酯[J]. 稀土, 2008, 29(2): 25-29.
LianP, LiL, XueJ, et al. Catalytic synthesis of sucrose palmitic acid ester by rare earth solid super acid under microwave irradiation[J]. Chinese Rare Earths, 2008, 29(2): 25-29.
22 YadavG D, NairJ J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microporous and Mesoporous Materials, 1999, 6(33): 1-48.
23 李静, 蒋剑春, 徐俊鸣. 柠檬酸酯合成用催化剂研究进展[J]. 生物质化学工程, 2009, 43(1): 52-56.
LiJ, JiangJ C, XuJ M. Research progress in the catalyst for synthesis of citric acid esters[J]. Biomass Chemical Engineering, 2009, 43(1): 52-56.
24 姚志龙, 肖贡程, 张军, 等. 离子液体催化合成醋酸正丙酯的工业实验[J]. 精细化工, 2010, 27(2): 147-154.
YaoZ L, XiaoG C, ZhangJ, et al. Industrial experiment of ionic liquid catalyst in n-propyl acetate synthesis[J]. Fine Chemicals, 2010, 27(2): 147-154.
25 张小曼. 离子液体催化合成乙酸丙酯的研究[J]. 化学工程师, 2009, 163(4): 65-67.
ZhangX M. Catalytic synthesis of propyl acetate in ionic liquid [bmim]PTSA[J]. Chemical Engineer, 2009, 163(4): 65-67.
26 周扬志, 佘鹏伟, 郭凯. 三氟甲磺酸催化合成柠檬酸酯[J]. 现代化工, 2012, 32(5): 67-70.
ZhouY Z, SheP W, GuoK. Synthesis of citric acid ester catalysed by trifluoromethanesulfonic acid[J]. Modern Chemical Industry, 2012, 32(5): 67-70.
27 陈昊, 杜山山, 王焱明, 等. 合成柠檬酸酯类增塑剂催化剂及柠檬酸酯类增塑剂的应用[J]. 工业催化, 2017, 25(2): 14-17.
ChenH, DuS S, WangY M, et al. The catalysts for synthesis of citrate esters plasticizers and the application of citrate esters plasticizers[J]. Industrial Catalysis, 2017, 25(2): 14-17.
28 刘世强, 宁培森, 丁著明. 环保型增塑剂的合成与应用研究进展[J]. 塑料助剂, 2016, (5): 4-11.
LiuS Q, NingP S, DingZ M. Advance on synthesis and application of environment-friendly plasticizers[J]. Plastics Additives, 2016, (5): 4-11.
29 郭康斌, 钱超, 陈新发, 等. 离子液体催化合成乙酰柠檬酸三丁酯[J].高校化学工程学报, 2014, 28(2): 396-400.
GuoK B, QianC, ChenX F, et al. Synthesis of acetyl trinbutyl citrate with an ionic liquid catalyst[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 396-400.
30 贾普友, 周永红, 胡立红, 等. 绿色增塑剂的研究进展[J]. 中国塑料, 2014, 28(7): 6-10.
JiaP Y, ZhouY H, HuL H, et al. Application and progress of green plasticizers[J]. China Plastic, 2014, 28(7): 6-10.
31 钱伯章. 国外增塑剂行业最新发展动态[J]. 国外塑料, 2011, 29(11): 36-38.
QianB Z. Plasticizer industry s latest developments[J]. World Plastics, 2011, 29(11): 36-38.
[1] 王韬, 刘向阳, 何茂刚. 离子液体[bmim][Tf2N]的分子动力学模拟[J]. 化工学报, 2019, 70(S2): 258-264.
[2] 刘向阳, 何茂刚. R1233zd(E)在[HMIM][PF6]中的溶解度和扩散系数的实验测量和理论计算[J]. 化工学报, 2019, 70(S2): 44-49.
[3] 郑勋, 徐宇, 花儿. 己基乙二胺-TFS型质子化离子液体与水分子间氢键相互作用的研究[J]. 化工学报, 2019, 70(S2): 85-93.
[4] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[5] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[6] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[7] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[8] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[9] 刘丹彤, 郑成, 毛桃嫣. 心血管中药方剂暖心方微波提取[J]. 化工学报, 2019, 70(S1): 115-123.
[10] 马密霞, 秦宁, 闵清, 胡文祥. 微波超声波联用萃取白藜芦醇及其苷的HPLC测定[J]. 化工学报, 2019, 70(S1): 124-129.
[11] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[12] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[13] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[14] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[15] 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘心洪, 包雨云, 李志鹏, 高正明, John M. Smith. Particle Image Velocimetry Study of Turbulence Characteristics in a Vessel Agitated by a Dual Rushton Impeller[J]. CIESC Journal, 2008, 16(5): 700 -708 .
[2] 王如强, 李初福, 何小荣, 陈丙珍. A Novel Close-loop Strategy for Integrating Process Operations of Fluidized Catalytic Cracking Unit with Production Planning Optimization[J]. CIESC Journal, 2008, 16(6): 909 -915 .
[3] 成有为, 彭革, 王丽军, 李希. Kinetics of Burning Side Reaction in the Liquid-phase Oxidation of p-Xylene[J]. CIESC Journal, 2009, 17(2): 181 -188 .
[4] 李娟, 石玉美, 汪荣顺. Effect of Working Temperature on the Resistance Characteristic of a Pleated Stainless Steel Woven Filter[J]. CIESC Journal, 2009, 17(6): 949 -954 .
[5] 刘文武, 胡常伟, 杨宇, 祝良芳, 童冬梅. Effect of the Interference Instant of Zeolite HY Catalyst on the Pyrolysis of Pubescens[J]. CIESC Journal, 2010, 18(2): 351 -354 .
[6] 王连邦, 詹星月, 杨珍珍, 马淳安. Catalytic Hydrolysis of Borohydride for Fuel Cells[J]. CIESC Journal, 2011, 19(4): 693 -697 .
[7] 吴蕾,彭永臻,王淑莹,马勇. 短程硝化颗粒污泥SBR的快速启动与维持 [J]. CIESC Journal, 2010, 61(11): 2931 -2937 .
[8] 夏新林,黄勇,谈和平. 微粒散射对半透明流体层光谱吸收特性的影响 [J]. CIESC Journal, 2001, 52(1): 17 -23 .
[9] 谢洪泉. 氯与植物纤维原料中木素的反应速度及反应性质的探讨 [J]. CIESC Journal, 1957, 8(1): 36 -50 .
[10] 王保伟,许根慧,孙洪伟. 电场增强低温等离子催化合成C_2烃 [J]. CIESC Journal, 2001, 52(1): 79 -83 .