化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1398-1408.doi: 10.11949/0438-1157.20190450

• 过程安全 • 上一篇    

航空煤油不同尺寸池火热流及温度特性研究

蒋新生(),张霖(),何东海,胡文超,刘鲁兴,赵亚东   

  1. 陆军勤务学院油料系,重庆 401331
  • 收稿日期:2019-05-17 修回日期:2019-09-11 出版日期:2020-03-05 发布日期:2019-11-28
  • 通讯作者: 张霖 E-mail:jxs_dy@163.com;253353529@qq.com
  • 作者简介:蒋新生(1972—),男,博士,教授,jxs_dy@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0809500);国家自然科学基金项目(51574254);重庆市研究生科研创新项目(CYS18147)

Study on radiation and temperature characteristics of aviation kerosene fire with different sizes in pools combustion

Xinsheng JIANG(),Lin ZHANG(),Donghai HE,Wenchao HU,Luxing LIU,Yadong ZHAO   

  1. Department of Oil, Army Logistical University, Chongqing 401311, China
  • Received:2019-05-17 Revised:2019-09-11 Online:2020-03-05 Published:2019-11-28
  • Contact: Lin ZHANG E-mail:jxs_dy@163.com;253353529@qq.com

摘要:

为研究航空煤油池火燃烧过程中热流与温度特性,搭建了油料燃烧模拟实验台架。通过分析实验图像与数据,发现航空煤油池火辐射热通量随径向距离和高度的增大逐渐减小,其中辐射热通量对高度增加更为敏感,随高度升高下降幅度更快;热辐射先于热对流达到强度最大值,随后在稳定燃烧阶段后期热对流强度存在跃升现象,强度超过热辐射强度,成为该阶段主要传热方式;航空煤油池火中心线上,下部区域火焰连续燃烧、氧气浓度低,上部区域油火卷吸空气、氧气浓度较高,是导致不同高度最高温度到达时刻不同的主要原因;对不同尺寸油池火来说,其热通量峰值随着油池尺寸增大而增大,同时方形油池热通量峰值显著高于圆形油池。

关键词: 航空煤油, 油池火, 辐射, 火焰温度, 热传导, 对流

Abstract:

In order to study the characteristics of heat flow and temperature in the combustion process of aviation kerosene tank fire, an oil combustion simulation bench was set up. By analyzing the experimental images and data, it is found that the radiant heat flux of kerosene pool fire decreases gradually with the increase of radial distance and height, in which the radiant heat flux is more sensitive to the increase of height and decreases more rapidly with the increase of height. The heat radiation reached the maximum intensity before the heat convection, and then there was a jump in the heat convection intensity in the later stage of the stable combustion, and the intensity exceeded the heat radiation intensity and became the main heat transfer mode in this stage. On the central line of the kerosene pool fire, the flame in the lower area burns continuously with low oxygen concentration, while the oil fire in the upper area absorbs air and has high oxygen concentration, which is the main reason for the difference in the time when the highest temperature at different heights arrives. For different sizes of oil pool fires, the peak heat flux increases with the size of the oil pool, and the peak heat flux of the square oil pool is significantly higher than that of the round oil pool.

Key words: aviation kerosene, oil-pool-fire, radiation, flame temperature, heat conduction, convection

中图分类号: 

  • X 937

图1

油料燃烧模拟实验系统"

表1

油池尺寸形状及实验工况"

油池形状直径/m壁高/m燃料种类加入燃料体积/L
圆形0.50.1航空煤油1
圆形0.40.1航空煤油1
正方形0.30.1航空煤油1

表2

热流计位置"

编号高度/m距油池轴线水平距离/m
1#1.001.5D
2#0.751.5D
3#0.501.5D
4#0.752D
5#0.752D
6#0.753D

表3

热电偶位置"

编号高度/m
1#0.25
2#0.50
3#0.75
4#1.00
5#1.25

图2

油池火发展过程"

图3

不同高度距油池轴线0.75 m辐射热通量"

图4

与油池轴线不同距离高0.50 m辐射热通量"

图5

全热通量及辐射热通量对比"

图6

对流热通量"

图7

不同高度距油池轴线1.5D处热通量"

图8

高0.75 m距油池轴线2D处热通量情况"

图9

高0.75 m距油池轴线3D处热通量"

表4

火焰不同区域参数取值"

区域z/Q2/5kα
连续区≤0.086.91/2
间歇区0.08~0.201.90
烟羽流区≥0.201.1-1/3

图10

0.5 m圆形油池不同高度火焰中心线温度变化"

图11

0.4 m圆形油池不同高度火焰中心线最高温度"

图12

0.3 m方形油池不同高度火焰中心线温度变化"

图13

不同高度火焰中心线最高温度"

图14

不同尺寸同一高度处燃烧过程中温度变化"

1 范继义. 油库千例事故分析[M]. 北京: 中国石化出版社, 2005.
Fan J Y. Analysis of 1000 Accidents in Oil Depot[M]. Beijing: China Petrochemical Press, 2005.
2 Cozzani V, Gubinelli G, Salzano E. Escalation thresholds in the assessment of domino accidental events [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 1- 21.
3 魏东, 杨君涛, 董希琳. 着火油罐稳定燃烧时的辐射热分布[J]. 热科学与技术, 2005, (3): 241-245.
Wei D, Yang J T, Dong X L. Thermal radiation distribution of steady burning of oil tank[J]. Journal of Thermal Science and Technology, 2005, (3): 241-245.
4 迟立发. 油罐火灾的辐射热及其预测[J]. 消防科学与技术, 1983, 2(2): 10-16.
Chi L F. Prediction of thermal radiation for oil tank fires [J]. Fire Sci. Tech. , 1983, 2(2): 10-16.
5 郎需庆, 刘全桢. 英国邦斯菲尔德油库火灾爆炸事故引发的思考[J]. 石油化工安全环保技术, 2009, 25(6): 45-48.
Lang X Q, Liu Q Z. Considerations on a fire and explosion accident at buncefield oil storage depot in England[J]. Petrochemical Safety and Environmental Protection Technology, 2009, 25(6): 45-48. .
6 Report of the minister for petroleum and natural gas about the incident of fire at POL Depot of Indian Oil Corporation[R]. 2009.
7 李进, 宋广成. 黄岛油库特大火灾事故的分析[J]. 消防科技, 1991, (3): 24-28.
Li J, Song G C. Analysis of fire accident in Huangdao oil depot[J]. Fire Science and Technology, 1991, (3): 24-28.
8 康泉胜. 小尺度油池火非稳态燃烧特性及热反馈研究[D]. 合肥: 中国科学技术大学, 2010.
Kang Q S. Study on burning characteristic and heat feedback of unsteady combustion process of small scale pool fires[D]. Hefei: University of Science and Technology of China, 2010.
9 李全峰, 季经纬, 陈金林, 等. 蒙特卡洛法在火焰热辐射计算中的应用[J]. 消防科学与技术, 2008, (2): 79-82.
Li Q F, Ji J W, Chen J L, et al. The application of Monte Carlo method in the flame radiation[J]. Fire Science and Technology, 2008, (2): 79-82.
10 程薇, 李乾, 马力, 等. 全尺寸油罐区火灾爆炸灾害模拟与理论研究[J]. 爆破, 2018, 35(3): 29-34.
Cheng W, Li Q, Ma L, et al. Simulation and theory study on fire and explosion of full scale oil tank[J]. Blasting, 2018, 35(3): 29-34.
11 李玉, 张涛. 基于CFD的油罐全液面火灾热辐射分布研究[J]消防科学与技术, 2018, 37(1): 7-10.
Li Y, Zhang T. Research on distribution of thermal radiation in whole-surface tank fire based on CFD[J]. Fire Science and Technology, 2018, 37(1): 7-10.
12 邢志祥, 蒋军成. 池火灾中火焰对容器表面的热辐射计算[J]. 石油化工设备, 2004, (5): 18-20.
Xing Z X, Jiang J C. The model of radiated heat flux from pool fire to the surface of tanks[J]. Petro-Chemical Equipment, 2004, (5): 18-20.
13 王伟, 广才, 尹莉萍. 燃油流量对防火试验火焰特征的影响[J]. 中国安全生产科学技术, 2017, 13(11): 41-47.
Wang W, Guang C, Yin L P. Influence of fuel flow rate on flame characteristics in fire test[J]. Journal of Safety Science and Technology, 2017, 13(11): 41-47.
14 翁韬, 魏涛, 丛北华, 等. 城镇森林交界域典型树冠火辐射实验研究[J]. 燃烧科学与技术, 2008, (2): 165-170.
Weng T, Wei T, Cong B H, et al. Experimental studies on radiation[J]. Journal of Combustion Science and Technology, 2008, (2): 165-170.
15 贾敬蕊, 朱霁平, 张林鹤, 等. 龙柏树冠火对其相邻建筑的辐射特性研究[J]. 火灾科学, 2012, 21(3): 123-130.
Jia J R, Zhu J P, Zhang L H, et al. A study of radiation characteristics of cypress crown fire on its adjacent structures[J]. Fire Safety Science, 2012, 21(3): 123-130.
16 国家安全生产督管理总局.化工企业定量风险评价导则: AQ/T 3046—2013[S]. 北京: 煤炭工业出版社, 2013.
State Administration of Work Safety. Guidelines for Quantitative Risk Assessment of Chemical: AQ/T 3046—2013[S]. Beijing: China Coal Industry Publishing House, 2013.
17 de Ris J L, Orloff L. A dimensionless correlation of pool burning data[J]. Combustion and Flame, 1972, 18(3): 381-388
18 National Fire Protection Association. Standard for Production, Storage and Handling of LNG[M]. Quincy: MA An International Codes and Standards Organization, 2008: 49-55.
19 马哲, 何其泽, 杨昀. 丙烷/氢气混合燃烧的火焰特征与辐射特性试验研究[J]. 消防科学与技术, 2017, 36(9): 1190-1193
Ma Z, He Q Z, Yang Y. Flame structure and radiation on characteristics of propane/hydrogen mixture fire[J]. Fire Science and Technology, 2017, 36(9): 1190-1193
20 王补宣. 工程传热传质学[M]. 北京: 科学出版社, 2015.
Wang B X. Engineering Heat and Mass Transfer[M]. Beijing: Science Press, 2015.
21 刘美磊. 石油化工行业典型火灾事故数值模拟研究[D]. 北京: 中国石油大学, 2011.
Liu M L. Research on numerical simulation of typical fire accidents in petrochemical industry[D]. Beijing: China University of Petroleum, 2011.
22 焦艳. 多油池火源燃烧特性的实验与理论研究[D]. 合肥: 中国科学技术大学, 2018.
Jiao Y. Experimental and theoretical research on combustion characteristics of multiple pool fires[D]. Hefei: University of Science and Technology of China, 2018.
23 党晓贝. 不同边沿高度条件下正庚烷油池火燃烧特性研究[D]. 合肥: 中国科学技术大学, 2018.
Dang X B. Study on burning behavior of heptane pool fire with various lip heights[D]. Hefei: University of Science and Technology of China, 2018.
24 Hu L H, Liu S, Peng W, et al. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel[J]. J. Hazard Mater. , 2009, 169(1/2/3): 972-979.
25 郎需庆, 刘全桢, 宫宏. 几起油库重大火灾事故引发的思考[J]. 消防技术与产品信息, 2011, (10): 3-5.
Lang X Q, Liu Q Z, Gong H. Considerations on a fire and explosion accident at buncefield oil storage depot in England[J]. Petrochemical Safety and Environmental Protection Technology, 2011, (10): 3-5.
26 Mudan K S. Thermal radiation hazards from hydrocarbon pool fires [J]. Progress Energy Combustion Sci. , 1984, (10): 59-80.
27 Beyler C L. Fire Hazard Calculation for Large Open Hydroncarbon Fires[M]//The SFPE Handbook of Fire Protection Engineering. 3rd ed. Quincy: NFPA, 2002: 3-280.
28 Lautenberger C W, de Ris J L, Dembsey N A, et al. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames[J]. Fire Safety Journal, 2005, 40: 141-176.
29 庄磊. 航空煤油池火热辐射特性及热传递研究[D]. 合肥: 中国科学技术大学, 2008.
Zhuang L. Studies on thermal radiation charcter and heat transfer of avation fuel pool fires[D]. Hefei: University of Science and Technology of China, 2008.
30 McCaffrey B J. Purely Buoyant Diffusion Flames: Some Experimental Results[M]. Washington DC: National Bureau of Standards, 1979.
[1] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[2] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[3] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[4] 孟凡斌, 段卜月, 李栋, 王迪, 吕妍. 管道高温壁面辐射对激光测量天然气含水量影响分析[J]. 化工学报, 2019, 70(S2): 215-219.
[5] 殷金英,韩江月,祁彩辉. 碳纤维结构排布对其辐射特性影响的分析[J]. 化工学报, 2019, 70(S2): 356-362.
[6] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
[7] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[8] 程晓舫,潘其其,程子奇. 真实温度的辐射测量[J]. 化工学报, 2019, 70(S2): 8-14.
[9] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
[10] 姚强, 郭雪岩, 杨帆, 王志远. 球床反应堆面心立方单元局部流动与传热的数值分析[J]. 化工学报, 2019, 70(S2): 161-168.
[11] 钟权, 董学强, 赵延兴, 王敬洲, 张海洋, 沈俊, 公茂琼. 一种比定容热容测量装置[J]. 化工学报, 2019, 70(S2): 20-24.
[12] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[13] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[14] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[15] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李洪枚,柯家骏. 营养物对氧化亚铁硫杆菌浸出含镍磁黄铁矿的影响 [J]. CIESC Journal, 2000, 51(S1): 151 -154 .
[2] 刘智勇, 董超芳, 李晓刚, 王立贤, 梁平. 35CrMo和00Cr13Ni5Mo硫化氢环境应力腐蚀开裂 [J]. 化工学报, 2008, 59(10): 2561 -2567 .
[3] 刘跃进, 朱福勇, 韩路长, 李毅斌, 谢中权, 李宗会, 刘永杰. 001×7(732)阳离子交换树脂催化醋酸甲酯
水解反应过程模拟与优化
[J]. 化工学报, 2007, 58(10): 2513 -2518 .
[4] 徐德龙,胡道和. 旋流板分离器的三维流场测定及结构改进 [J]. CIESC Journal, 1986, 37(1): 106 -115 .
[5] 高婷婷, 姬广斌. Pd/CMK-3的合成及其在Suzuki-Miyaura碳-碳偶联反应中的应用 [J]. 化工学报, 2011, 62(2): 515 -519 .
[6] 孙长宇; 陈光进; 郭天民; 林万臣; 陈江. 甲烷水合物分解动力学 [J]. CIESC Journal, 2002, 53(9): 899 -903 .
[7] 朱子彬,马智华,俞丰,张成芳,王欣荣. 煤快速热解获得液态烃和气态烃的研究(Ⅲ)——气体停留时间的考察 [J]. CIESC Journal, 1995, 46(6): 710 -716 .
[8] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[9] 文先太,梁彩华,刘成兴,张小松. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. CIESC Journal, 2011, 62(11): 3242 -3247 .
[10] 刘阳生; 戴猷元. 二(2-乙基己基)磷酸萃取L-色氨酸 [J]. CIESC Journal, 2001, 52(3): 216 -221 .