化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 7-14.doi: 10.11949/0438-1157.20190440

• 热力学 • 上一篇    下一篇

甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡

李攀(),孔慧,宋卓栋,张作毅,王云芳()   

  1. 中国石油大学(华东)化学工程学院,山东 青岛 266580
  • 收稿日期:2019-04-26 修回日期:2019-07-28 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 王云芳 E-mail:ustblipan@163.com;yfwang@upc.edu.cn
  • 作者简介:李攀(1992—),男,硕士研究生,ustblipan@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFB06044800)

Vapor-liquid equilibrium for methanol-formaldehyde-polyoxymethylene dimethyl ethers ternary system

Pan LI(),Hui KONG,Zhuodong SONG,Zuoyi ZHANG,Yunfang WANG()   

  1. College of Chemical Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2019-04-26 Revised:2019-07-28 Online:2020-04-25 Published:2020-05-22
  • Contact: Yunfang WANG E-mail:ustblipan@163.com;yfwang@upc.edu.cn

摘要:

聚甲氧基二甲醚(PODEn)是一种含氧量较高的化合物,近年来更是发展为一种优质的柴油添加剂。在101.3 kPa恒定压力下,使用改进的汽液平衡双循环Rose釜测定了甲醇-甲醛-PODE2三元体系汽液平衡数据。运用最大似然原理,在Aspen Plus软件中,分别采用NRTL、Wilson以及UNIQUAC三种活度系数模型对测定的三元汽液平衡数据进行回归,分别得到三个模型所对应的二元交互参数以及模拟计算值。通过对比模拟值与实验值,得到温度和气相组成的平均绝对偏差,分别小于1.10 K、0.0250和0.0240。三个模型的关联结果均适用于此体系,得到的二元交互参数能够应用于甲醇-甲醛-PODE2三元体系的精馏设计,为相关物系的工业分离优化奠定了数据基础。

关键词: 甲醇, 甲醛, PODE2, 汽液平衡, 热力学模型

Abstract:

Polyoxymethylene dimethyl ether (PODEn) is a kind of compound with high oxygen content,which is developing to be a high quality diesel additive in recent years.At a constant pressure of 101.3 kPa, the vapor-liquid equilibrium data of methanol-formaldehyde-PODE2 ternary system was determined using the improved vapor-liquid equilibrium double cycle Rose kettle.Based on maximum-likelihood method,the measured ternary vapor-liquid equilibrium data were correlated by NRTL, Wilson, and UNIQUAC activity coefficient model with Aspen Plus software.And the corresponding binary interaction parameters and simulated calculation values of the three models are obtained respectively. By comparing the calculation value of three models with experimental value, the average absolute deviation in boiling point and vapor-phase composition were determined,which were less than 1.10 K, 0.0250 and 0.0240, respectively.The correlation results of the three models are applicable to the system, and the obtained binary interaction parameters can be applied to the distillation design of the methanol-formaldehyde-PODE2 ternary system, laying a data foundation for the industrial separation optimization of the related matter system.

Key words: methanol, formaldehyde, PODE2, vapor-liquid equilibrium, thermodynamic model

中图分类号: 

  • TQ 031.1

表1

实验仪器"

仪器名称规格型号生产厂家
改进的Rose釜玻璃制双循环北京玻璃仪器加工厂
精密温度计1/20北京玻璃研究院
电子分析天平AL204METTLER TOLEDO(上海)有限公司
气相色谱仪安捷伦GC7890A美国安捷伦
均相反应器KLJX-12A烟台科立化工设备有限公司
电压调节器TDGC3-500W上海征西电气科技有限公司
烘箱DHG-9053A上海浦东荣丰科学仪器有限公司

表2

实验试剂"

试剂名称规格标牌纯度/%(质量)生产厂家GC纯度/%(质量)
甲醇分析纯≥99.5国药集团99.81
PODE1分析纯≥99.7国药集团99.83
PODE2自制99.49
多聚甲醛自制99.43

表3

NRTL模型对甲醇-甲醛-PODE2三元体系的模拟结果"

No.Texp/Kx1,expx2,expy1,expy2,expTest/Ky1,esty2,estΔT/KΔy1Δy2
1368.790.03050.94410.06190.9031368.770.05320.9171-0.03-0.00880.0140
2366.990.04250.93270.09960.8694367.370.07780.89660.38-0.02190.0272
3365.830.05480.92000.13080.8400366.020.10240.87390.20-0.02840.0339
4364.330.06890.90350.16230.8102364.920.12620.85020.59-0.03610.0399
5362.000.08460.89000.20150.7748362.560.16730.81270.56-0.03420.0379
6360.430.09850.87460.23580.7413361.100.19360.78570.67-0.04210.0444
7359.540.10700.86540.25430.7227360.210.21000.76900.67-0.04430.0464
8357.360.13500.83720.29370.6846357.280.26830.7116-0.08-0.02550.0269
9355.440.15480.81670.33300.6479355.220.31030.6704-0.22-0.02260.0224
10352.660.19590.77520.39340.5875351.990.37970.6004-0.67-0.01370.0129
11351.320.21430.75890.42640.5567350.300.41640.5657-1.01-0.01000.0090
12350.620.22370.74740.44160.5429349.710.43190.5509-0.91-0.00970.0080
13350.160.23380.73730.45290.5312349.180.44440.5381-0.98-0.00860.0069
14348.160.26990.70230.49310.4925347.070.49450.4894-1.100.0014-0.0030
15347.440.28810.68520.50870.4763346.300.51320.4705-1.140.0045-0.0058
16346.450.31970.65420.53280.4533345.110.54670.4381-1.340.0139-0.0152
17369.390.02790.94200.04760.9003368.910.04390.9162-0.48-0.00370.0160
18368.790.03880.92800.06570.8867368.370.05870.9015-0.42-0.00700.0148
19367.370.05110.91100.09590.8565367.630.07330.88390.27-0.02260.0273
20364.110.08240.87540.16180.7934365.280.11940.84051.17-0.04240.0471
21362.150.10540.85150.20480.7549363.330.15850.80461.17-0.04630.0498
22359.540.13480.82190.26520.7016360.110.22140.74760.57-0.04380.0460
23357.240.16130.79490.31560.6531357.620.27000.69860.38-0.04560.0455
24356.030.18150.77590.34490.6257355.950.30840.6621-0.08-0.03650.0365
25354.740.20000.75580.36940.5984354.660.33460.6335-0.08-0.03490.0351
26353.860.21370.74190.38850.5837353.640.36080.6094-0.23-0.02780.0257

表4

三个模型对于三元体系的模拟结果对比"

模型方程平衡温度/K甲醇气相浓度PODE2气相浓度

平均

绝对偏差

最大

绝对偏差

平均

绝对偏差

最大

绝对偏差

平均

绝对偏差

最大

绝对偏差

Wilson0.962.320.02400.05840.02350.0583
NRTL1.082.740.02460.05520.02370.0554
UNIQUAC0.952.300.02430.06460.02380.0597

表5

甲醇-甲醛-PODE2三元体系的二元交互参数"

方程体系aijajibijbjicij
Wilson甲醇-甲醛20.77215856.5176-1275.03466-875.8966260
甲醇-PODE29.4174988729.1792322-6476.11242-100000
甲醛-PODE2-0.04312269830.4888446-370.184734-100000
NRTL甲醇-甲醛-27.5292688-22.8532058100006862.583820.3
甲醇-PODE2-9.686943243.153896593321.78975-813.9245150.3
甲醛-PODE2-29.817718-3.97475484100001420.32920.3
UNIQUAC甲醇-甲醛27.865937617.0564607-10000-5171.749890
甲醇-PODE2-2.880170957.42515511021.65838-2793.073690
甲醛-PODE228.3279998-0.18584951-10000291.982130

图1

Wilson模型对于甲醇-甲醛-PODE2体系的模拟值与实验值的对比"

图2

NRTL模型对于甲醇-甲醛-PODE2体系的模拟值与实验值的对比"

图3

UNIQUAC模型对于甲醇-甲醛-PODE2体系的模拟值与实验值的对比"

1 李振光, 袁建团. 中国柴油需求趋势分析[J]. 国际石油经济, 2015, 23(9): 88-93.
Li Z G, Yuan J G. China s diesel demand[J]. International Petroleum Economics, 2015, 23(9): 88-93.
2 石华. 我国石油对外依存度首破60%[J]. 石油库与加油站, 2016, 25(1): 25.
Shi H. China s oil external dependence first broke 60%[J]. Oil Depot and Gas Station, 2016, 25(1): 25.
3 焦瑞. 如何认识我国原油对外依存度逐年攀升[J]. 炼油技术与工程, 2017, (4): 45.
Jiao R. How to understand China s crude oil dependence increasing year by year[J]. Refining Technology and Engineering, 2017, (4): 45.
4 钱伯章. 到2020年柴油需求将超过汽油[J]. 润滑油与燃料, 2014, (z1): 34.
Qian B Z. Demand for diesel will exceed demand for gasoline by 2020[J]. Lube and Fuel, 2014, (z1): 34.
5 李俊涛. 添加剂对柴油质量影响的研究[D]. 武汉: 武汉工程大学, 2016.
Li J T. Study on the effect of additives on diesel oil quality[D]. Wuhan: Wuhan Institute of Technology, 2016.
6 王志, 刘浩业, 张俊, 等. 聚甲氧基二甲醚与柴油混合燃料的燃烧与排放特性[J]. 汽车安全与节能学报, 2015, 6(2): 191-197.
Wang Z, Liu H Y, Zhang J, et al. Combustion and emission characteristics of diesel engines fuelled by polyoxymethylene dimethyl ethers (PODEn)[J]. Journal of Automotive Safety and Energy, 2015, 6(2): 191-197.
7 Pellegrini L, Marchionna M, Patrini R, et al. Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine[R]. SAETechnical Paper, 2012.
8 Pellegrini L, Marchionna M, Patrini R, et al. Emission performance of neat and blended polyoxymethylene dimethyl ethers in an old light-duty diesel car[R]. SAETechnical Paper, 2013.
9 张信伟, 李杰, 倪向前, 等. 聚甲氧基二甲醚合成技术的产业化进展[J]. 化工进展, 2016, 35(7): 2293-2298.
Zhang X W, Li J, Ni X Q, et al. Industrialization progress of polyoxymethylene dimethyl ethers synthesis technology[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2293-2298.
10 杨丰科, 王俊伟. 柴油添加剂聚甲氧基二甲醚的合成研究进展[J]. 应用化工, 2012, 41(10): 1803-1806.
Yang F K, Wang J W. Progress on the synthesis of polyoxymethylene dimethyl ethers as component of tailored diesel fuel[J]. Applied Chemical Industry, 2012, 41(10): 1803-1806.
11 史高峰, 陈英赞, 陈学福, 等. 聚甲氧基二甲醚研究进展[J]. 天然气化工, 2012, 37(2): 74-78.
Shi G F, Chen Y Z, Chen X F, et al. Research progress in polyoxymethylene dimethyl ethers[J]. Natural Gas Chemical Industry, 2012, 37(2): 74-78.
12 张建强, 唐斌, 刘殿华, 等. 聚甲氧基二甲醚合成研究现状[J]. 煤化工, 2013, (1): 41-43.
Zhang J Q, Tang B, Liu D H, et al. Research progress of polyoxymethylene dimethyl ethers synthesis[J]. Coal Chemical Industry, 2013, (1): 41-43.
13 Burger J, Siegert M, Ströfer E, et al. Poly (oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11): 3315-3319.
14 Burger J, Ströfer E, Hasse H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12751-12761.
15 Burger J, Hasse H. Multi-objective optimization using reduced models in conceptual design of a fuel additive production process[J]. Chemical Engineering Science, 2013, 99: 118-126.
16 Burger J, Ströfer E, Hasse H. Production process for diesel fuel components polyoxymethylene dimethyl ethers from methane-based products by hierarchical optimization with varying model depth[J]. Chemical Engineering Research and Design, 2013, 91(12): 2648-2662.
17 孙兰义. 化工过程流程模拟实训: Aspen Plus教程[M]. 北京: 化学工业出版社, 2012.
Sun L Y. Chemical Process Process Simulation Training: Aspen Plus Tutorial[M]. Beijing: Chemical Industry Press, 2012.
18 张治山, 杨超龙. Aspen Plus在化工中的应用[J]. 广东化工, 2012, 39(3): 77-78.
Zhang Z S, Yang C L. Application of Aspen Plus in chemical engineering[J]. Guangdong Chemical Industry, 2012, 39(3): 77-78.
19 More R K, Bulasara V K, Uppaluri R, et al. Optimization of crude distillation system using Aspen Plus: effect of binary feed selection on grass-root design[J]. Chemical Engineering Research & Design, 2010, 88(2): 121-134.
20 Ramzan N, Ashraf A, Naveed S, et al. Simulation of hybrid biomass gasification using Aspen plus: a comparative performance analysis for food, municipal solid and poultry waste[J]. Biomass & Bioenergy, 2011, 35(9): 3962-3969.
21 Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy, 2010, 35(12): 4545-4555.
22 周怀申, 韩世钧. 一种新的循环法汽液平衡釜——改进的Rose釜[J]. 化学工程, 1980, (5): 23-26.
Zhou H S, Han S J. A new kind of vapor liquid balance kettle of circulating method — improved Rose kettle[J]. Chemical Engineering(China), 1980, (5): 23-26.
23 朱云庆.醋酸物系相平衡研究[D]. 青岛: 中国石油大学, 2008.
Zhu Y Q. Study on phase equilibrium of acetic acid[D]. Qingdao: China University of Petroleum, 2008.
24 任海鸥, 周金波, 李长明, 等. 常压下叔丁醇-水-乙二醇体系汽液平衡测定与关联[J]. 化学工程, 2017, 45(9): 35-38.
Ren H O, Zhou J B, Li C M, et al. Determination and correlation of vapor - liquid equilibrium of tert-butanol - water - glycol system under atmospheric pressure[J]. Chemical Engineering(China), 2017, 45(9): 35-38.
25 周航. 乙醇-丙酸乙酯-对二甲苯等压汽液相平衡研究[D]. 天津: 天津大学, 2017.
Zhou H. Study on vapor-liquid equilibrium of ethanol-ethyl propionate -p-xylene at constant pressure[D]. Tianjin: Tianjin University, 2017.
26 曹玲, 徐威震, 李学琴, 等. 甲醇+碳酸二甲酯+二乙二醇三元物系等压汽液平衡数据的测定与关联[J]. 石油化工, 2017, 46(9): 74-79.
Cao L, Xu W Z, Li X Q, et al. Isobaric vapor-liquid equilibrium for methanol+dimethyl carbonate+ diethylene glycol system[J]. Petrochemical Technology, 2017, 46(9): 74-79.
27 Nagahama K. VLE measurements at elevated pressures for process development [J]. Fluid Phase Equilibria, 1996, 116(1): 361-372.
28 Fornari R E, Alessi P, Kikic I. High-pressure fluid-phase equilibria: experimental methods and systems investigated(1978—1987)[J]. Fluid Phase Equilibria, 1990, 57: 1-33.
29 Dohrn R, Brunner G. High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988—1993) [J]. Fluid Phase Equilibria, 1995, 106(1): 213-282.
30 王琦. 双循环加压汽液相平衡装置的建立与校核[J]. 石油学报, 1988, 4(2): 50-56.
Wang Q. Establishment and verification of double cycle pressurized vapor liquid phase balance device[J]. Acta Petroleum Sinica, 1988, 4(2): 50-56.
[1] 宋卓栋, 张作毅, 潘学龙, 王云芳. 聚甲醛二甲醚体系汽液平衡数据的测定与关联[J]. 化工学报, 2020, 71(S1): 1-6.
[2] 张先明, 胡玉峰. 甲醛+1,3,5-三聚甲醛+硫酸+水体系汽液相平衡实验和理论研究[J]. 化工学报, 2020, 71(1): 216-224.
[3] 谭亚龙, 舒高翔, 崔林芳, 章连众. 应用于离子液体体系汽液平衡测定的液相配制、气相分析方法[J]. 化工学报, 2020, 71(1): 225-230.
[4] 杨协和, 沈文锋, 张扬, 张海, 张建胜, 吕俊复. 甲醇-空气层流火焰速度的数值研究和预测模型[J]. 化工学报, 2019, 70(8): 3011-3020.
[5] 李进龙, 李佳书, 杨青, 彭昌军, 刘洪来. 乙腈+水+离子液体等压汽液平衡测定与计算[J]. 化工学报, 2019, 70(6): 2110-2116.
[6] 赵延兴, 王宪, 姚晓宇, 董学强, 沈俊, 公茂琼. 流体汽液相平衡混合规则研究进展[J]. 化工学报, 2019, 70(6): 2036-2050.
[7] 吴金芝, 王琳琳, 陈小鹏, 童张法, 范孝雄, 梁保芳. 莰烯+(+)-3-蒈烯体系汽液平衡数据的测定与关联[J]. 化工学报, 2019, 70(6): 2092-2101.
[8] 曹晨熙, 陈天元, 丁晓旭, 黄海, 徐晶, 韩一帆. 负载型铟基催化剂二氧化碳加氢动力学研究[J]. 化工学报, 2019, 70(10): 3985-3993.
[9] 王岩, 石磊, 范家麒, 陈飞, 姚杰, 许光文. 环丁砜处理磺酸树脂高效催化聚甲氧基二甲醚合成[J]. 化工学报, 2019, 70(1): 116-127.
[10] 王子宗, 刘洪谦, 王基铭. 甲醇制丙烯分离流程的研究与优化[J]. 化工学报, 2019, 70(1): 136-145.
[11] 王锋, 刘艳云, 陈泊宏, 王国强. 操作参数对余热回收甲醇水蒸气重整制氢过程的影响[J]. 化工学报, 2018, 69(S1): 102-107.
[12] 徐令君, 王淑娟. [Bmim][BF4]/MEA混合水溶液的CO2汽液平衡和解吸能耗分析[J]. 化工学报, 2018, 69(9): 3879-3886.
[13] 孙丽霞, 廖丹葵, 王坤, 孙建华, 童张法. α-蒎烯+β-蒎烯+对伞花烃的减压汽液平衡[J]. 化工学报, 2018, 69(7): 2822-2828.
[14] 李海涛, 牛珠珠, 杨国峰, 张鸿喜, 王志鹏, 赵永祥. Cu2O/TiO2催化甲醛乙炔化反应的载体效应[J]. 化工学报, 2018, 69(6): 2512-2518.
[15] 范凯, 陈长旭, 周峰, 郑晖, 许春建. 正丁醇-氯苯-苯乙酮三元体系等压汽液平衡的测定与关联[J]. 化工学报, 2018, 69(2): 578-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[8] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[9] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[10] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .