化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 146-154.doi: 10.11949/0438-1157.20190420

• 流体力学与传递现象 • 上一篇    下一篇

PEMFC冷却剂循环条件下冷启动数值模拟

魏琳1,2,3(),廖梓豪1,2,3,4,蒋方明1,2,3()   

  1. 1. 中国科学院广州能源研究所,广东 广州 510640
    2. 中国科学院可再生能源重点实验室,广东 广州 510640
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    4. 中国科学院大学,北京 100049
  • 收稿日期:2019-04-23 修回日期:2019-05-30 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 蒋方明 E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn
  • 作者简介:魏琳(1988—),女,博士,助理研究员,weilin@ms.giec.ac.cn
  • 基金资助:
    广东省自然科学基金项目(2017A000310186);上海汽车工业科技发展基金会项目(1706)

Numerical study on cold start of PEMFC with coolant circulation

Lin WEI1,2,3(),Zihao LIAO1,2,3,4,Fangming JIANG1,2,3()   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-04-23 Revised:2019-05-30 Online:2019-09-05 Published:2019-11-07
  • Contact: Fangming JIANG E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn

摘要:

质子交换膜燃料电池(PEMFC)具有高能量比、环境友好、工作温度低等优点,可用作未来新能源汽车的能量来源,具有很好的发展前景。然而零下温度启动时,电池内水结冰堵塞通道,严重影响电池启动性能及寿命。提出了PEMFC冷启动三维多物理场数值模型,考虑了冷却剂流动与传热的影响,对冷启动过程组分浓度、电势、温度、含冰量等参数进行了可视化分析。数值模拟结果与试验吻合良好,表明模型可用于预测电池冷启动性能并用于机理研究。

关键词: 燃料电池, 冷启动, 冷却剂, 数值模拟, 计算流体力学

Abstract:

Proton exchange membrane fuel cells (PEMFC) show great potential to be considered as a renewable power system for future automobile applications due to their high power density and low operating temperature. However, a successful startup from subfreezing temperatures is a major challenge for the commercialization of PEMFC. In this research, a three-dimensional electrochemical-transport coupled model is developed. The model accounts the flow and heat transfer of the coolant during the cold start process. A detailed visualization analysis is conducted to illustrate the effects of a coolant system on the cold start performance. Our results include reactants concentration profiles, voltage curves, temperature distribution, and ice formation. The model validation results show good agreement between the model prediction and experimental data. Therefore, the model can be used to achieve a better understanding of PEMFCs cold start behavior.

Key words: fuel cells, cold start, coolant, numerical analysis, CFD

中图分类号: 

  • TK 91

图1

PEMFC结构及网格"

表1

物性参数"

参数数值
扩散层孔隙率0.513
H2/O2/水蒸气扩散系数/(m2/s)8.67×10-5/ 1.53×10-5/ 1.79×10-5
双极板电导率/(S/m)1.4×106
扩散层/催化层电导率/(S/m)300
双极板/扩散层/催化层/质子交换膜/冷却剂热导率/(W/(m·K))16/ 1.7/ 0.27/ 0.16/ 0.25
双极板/扩散层/催化层/质子交换膜/冷却剂热质量/(kJ/(m3·K))4000/ 230/ 580/ 2300/ 3400

图2

网格无关性验证"

图3

冷却剂入口温度拟合"

图4

数值结果与实验数据对比"

表2

结构和工况参数"

参数数值
气体流道宽度/mm0.4
双极板厚度/mm0.1
扩散层厚度/mm0.2
催化层厚度/mm0.015
质子交换膜厚度/mm0.018
阳极/阴极化学计量比2/3
电池启动温度/°C-20
H2/O2流道入口温度/°C-14/-18
H2/O2流道入口压力/Pa1.84×105 /1.74×105

图5

z=0 m截面反应物浓度分布云图"

图6

MEM中面电流密度分布云图"

图7

温度分布曲线"

图8

z=0 m截面MEA含水量分布曲线"

图9

z=1 mm截面冰含量分布曲线"

1 张剑波, 黄福森, 黄俊, 等. 质子交换膜燃料电池零下冷启动研究进展[J]. 化学通报, 2017, 80(6): 507-516.
ZhangJ B, HuangF S, HuangJ, et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80(6): 507-516.
2 MengH. Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5738-5747.
3 KoJ, JuH. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells[J]. Applied Energy, 2012, 94: 364-374.
4 LuoY, JiaoK, JiaB. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2014, 77: 489-500.
5 TabeY, SaitoM, FukuiK, et al. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2012, 208: 366-373.
6 GeS, WangC Y. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(14): 4825-4835.
7 BégotS, HarelF, KauffmannJ M. Experimental studies on the influence of operational parameters on the cold start of a 2 kW fuel cell[J]. Fuel Cells, 2008, 8(2): 138-150.
8 SchießwohlE, von UnwerthT, SeyfriedF, et al. Experimental investigation of parameters influencing the freeze start ability of a fuel cell system[J]. Journal of Power Sources, 2009, 193(1): 107-115.
9 罗马吉, 王芳芳, 刘威, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120.
LuoM J, WangF F, LiuW, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(6): 116-120.
10 KoJ, KimW, HongT, et al. Impact of metallic bipolar plates on cold-start behaviors of polymer electrolyte fuel cells (PEFCs)[J]. Solid State Ionics, 2012, 225: 260-267.
11 KhandelwalM, LeeS, MenchM M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack[J]. Journal of Power Sources, 2007, 172(2): 816-830.
12 李友才, 许思传, 杨宗田. 不同参数对PEMFC电堆低温起动影响的仿真研究[J]. 电源技术, 2014, 38(9): 1657-1659.
LiY C, XuS C, YangZ T. Simulation study on cold start of proton exchange membrane fuel cell stack[J]. Chinese Journal of Power Sources, 2014, 38(9): 1657-1659.
13 KonnoN, MizunoS, NakajiH, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129.
14 JiangF, WangC Y. Potentiostatic start-up of PEMFCs from subzero temperatures[J]. Journal of the Electrochemical Society, 2008, 155(7): B743.
15 JiangF, WangC Y, ChenK S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342.
16 DuQ, JiaB, LuoY, et al. Maximum power cold start mode of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8390-8400.
17 张洁, 许思传, 郑浩, 等. 基于AMESim的燃料电池系统低温起动仿真[J]. 电源技术, 2015, 39(2): 298-301.
ZhangJ, XuS C, ZhengH, et al. Simulation of cold start of fuel cell system based on AMESim[J]. Chinese Journal of Power Sources, 2015, 39(2): 298-301.
18 GwakG, JuH. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11989-11997.
19 JiangF, FangW, WangC Y. Non-isothermal cold start of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 53(2): 610-621.
20 汪飞杰. 燃料电池发动机-20℃冷启动研究[J]. 上海汽车, 2017, (8): 3-6.
WangF J. -20℃ cold start research for fuel cell engine[J]. Shanghai Auto, 2017, (8): 3-6.
[1] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[4] 贾文华,田茂诚,张冠敏,魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[5] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[6] 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[7] 陈稳稳,刘中良,姜克隽,侯俊先,娄晓歌,李艳霞,廖强,朱恂. 微生物燃料电池处理含柠檬酸钠废水的研究[J]. 化工学报, 2019, 70(S2): 322-328.
[8] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[9] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[10] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[11] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[12] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[13] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[14] 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395.
[15] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王小芳, 金保升, 熊源泉, 钟文琪. Flow Behaviors of Gas-Solid Injector by 3D Simulation with Kinetic Theory of Granular Flow[J]. Chinese Journal of Chemical Engineering, 2008, 16(6): 823 -831 .
[2] 王如强, 李初福, 何小荣, 陈丙珍. A Novel Close-loop Strategy for Integrating Process Operations of Fluidized Catalytic Cracking Unit with Production Planning Optimization[J]. CIESC Journal, 2008, 16(6): 909 -915 .
[3] 杨敏杰, 南俊民, 侯宪鲁, 李伟善. Preparation and Electrochemical Performances of Nickel Metal Hydride Batteries with High Specific Volume Capacity[J]. CIESC Journal, 2008, 16(6): 944 -948 .
[4] 卢素敏, 马友光, 朱春英, 沈树华, 何清. The Effect of Hydrophobic Modification of Zeolites on CO2 Absorption Enhancement[J]. CIESC Journal, 2009, 17(1): 36 -41 .
[5] 李修亮, 苏宏业, 褚健. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine[J]. CIESC Journal, 2009, 17(1): 95 -99 .
[6] 范志伟, 周兴贵, 罗灵爱, 袁渭康. Numerical Investigation of Constructal Distributors with Different Configurations[J]. CIESC Journal, 2009, 17(1): 175 -178 .
[7] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. CIESC Journal, 2009, 17(5): 805 -813 .
[8] 杨刚, 史宏, 刘文强, 邢卫红, 徐南平. Investigation of Mg2+/Li+Separation by Nanofiltration[J]. CIESC Journal, 2011, 19(4): 586 -589 .
[9] 洪夏萍, 张蓉, 童少平, 马淳安. Preparation of Ti/PTFE-F-PbO2 Electrode with a Long Life from the Sulfamic Acid Bath and Its Application in Organic Degradation[J]. CIESC Journal, 2011, 19(6): 1033 -1038 .
[10] 韩爱军, 廖娟娟, 叶明泉, 李燕, 彭新华. Preparation of Nano-MnFe2O4 and Its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate[J]. CIESC Journal, 2011, 19(6): 1047 -1051 .