化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 146-154.doi: 10.11949/0438-1157.20190420
魏琳1,2,3(),廖梓豪1,2,3,4,蒋方明1,2,3(
)
Lin WEI1,2,3(),Zihao LIAO1,2,3,4,Fangming JIANG1,2,3(
)
摘要:
质子交换膜燃料电池(PEMFC)具有高能量比、环境友好、工作温度低等优点,可用作未来新能源汽车的能量来源,具有很好的发展前景。然而零下温度启动时,电池内水结冰堵塞通道,严重影响电池启动性能及寿命。提出了PEMFC冷启动三维多物理场数值模型,考虑了冷却剂流动与传热的影响,对冷启动过程组分浓度、电势、温度、含冰量等参数进行了可视化分析。数值模拟结果与试验吻合良好,表明模型可用于预测电池冷启动性能并用于机理研究。
中图分类号:
1 | 张剑波, 黄福森, 黄俊, 等. 质子交换膜燃料电池零下冷启动研究进展[J]. 化学通报, 2017, 80(6): 507-516. |
ZhangJ B, HuangF S, HuangJ, et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80(6): 507-516. | |
2 | MengH. Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5738-5747. |
3 | KoJ, JuH. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells[J]. Applied Energy, 2012, 94: 364-374. |
4 | LuoY, JiaoK, JiaB. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2014, 77: 489-500. |
5 | TabeY, SaitoM, FukuiK, et al. Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2012, 208: 366-373. |
6 | GeS, WangC Y. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(14): 4825-4835. |
7 | BégotS, HarelF, KauffmannJ M. Experimental studies on the influence of operational parameters on the cold start of a 2 kW fuel cell[J]. Fuel Cells, 2008, 8(2): 138-150. |
8 | SchießwohlE, von UnwerthT, SeyfriedF, et al. Experimental investigation of parameters influencing the freeze start ability of a fuel cell system[J]. Journal of Power Sources, 2009, 193(1): 107-115. |
9 | 罗马吉, 王芳芳, 刘威, 等. 质子交换膜燃料电池冷启动及性能衰减研究[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 116-120. |
LuoM J, WangF F, LiuW, et al. Research on PEMFC start-up at subzero temperature and performance decay[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(6): 116-120. | |
10 | KoJ, KimW, HongT, et al. Impact of metallic bipolar plates on cold-start behaviors of polymer electrolyte fuel cells (PEFCs)[J]. Solid State Ionics, 2012, 225: 260-267. |
11 | KhandelwalM, LeeS, MenchM M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack[J]. Journal of Power Sources, 2007, 172(2): 816-830. |
12 | 李友才, 许思传, 杨宗田. 不同参数对PEMFC电堆低温起动影响的仿真研究[J]. 电源技术, 2014, 38(9): 1657-1659. |
LiY C, XuS C, YangZ T. Simulation study on cold start of proton exchange membrane fuel cell stack[J]. Chinese Journal of Power Sources, 2014, 38(9): 1657-1659. | |
13 | KonnoN, MizunoS, NakajiH, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129. |
14 | JiangF, WangC Y. Potentiostatic start-up of PEMFCs from subzero temperatures[J]. Journal of the Electrochemical Society, 2008, 155(7): B743. |
15 | JiangF, WangC Y, ChenK S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342. |
16 | DuQ, JiaB, LuoY, et al. Maximum power cold start mode of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8390-8400. |
17 | 张洁, 许思传, 郑浩, 等. 基于AMESim的燃料电池系统低温起动仿真[J]. 电源技术, 2015, 39(2): 298-301. |
ZhangJ, XuS C, ZhengH, et al. Simulation of cold start of fuel cell system based on AMESim[J]. Chinese Journal of Power Sources, 2015, 39(2): 298-301. | |
18 | GwakG, JuH. A rapid start-up strategy for polymer electrolyte fuel cells at subzero temperatures based on control of the operating current density[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11989-11997. |
19 | JiangF, FangW, WangC Y. Non-isothermal cold start of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2007, 53(2): 610-621. |
20 | 汪飞杰. 燃料电池发动机-20℃冷启动研究[J]. 上海汽车, 2017, (8): 3-6. |
WangF J. -20℃ cold start research for fuel cell engine[J]. Shanghai Auto, 2017, (8): 3-6. |
[1] | 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129. |
[2] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[3] | 王宁,张晨宇,徐洪涛,张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200. |
[4] | 贾文华,田茂诚,张冠敏,魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207. |
[5] | 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243. |
[6] | 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249. |
[7] | 陈稳稳,刘中良,姜克隽,侯俊先,娄晓歌,李艳霞,廖强,朱恂. 微生物燃料电池处理含柠檬酸钠废水的研究[J]. 化工学报, 2019, 70(S2): 322-328. |
[8] | 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335. |
[9] | 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342. |
[10] | 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348. |
[11] | 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375. |
[12] | 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92. |
[13] | 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362. |
[14] | 王浩宇, 刘应书, 张传钊, 杨雄, 陈江伟. π型向心径向流吸附器变质量流动特性研究[J]. 化工学报, 2019, 70(9): 3385-3395. |
[15] | 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411. |