化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3346-3352.doi: 10.11949/0438-1157.20190401

• 流体力学与传递现象 • 上一篇    下一篇

局部低温诱发过冷三水醋酸钠释能特性实验研究

王慧丽(),周国兵()   

  1. 华北电力大学能源动力与机械工程学院,北京 102206
  • 收稿日期:2019-04-17 修回日期:2019-05-21 出版日期:2019-09-05 发布日期:2019-09-23
  • 通讯作者: 周国兵 E-mail:w17073224271@163.com;zhougb@ncepu.edu.cn
  • 作者简介:王慧丽(1996—),女,硕士研究生,w17073224271@163.com
  • 基金资助:
    北京市自然科学基金项目(3192034)

Experimental investigation on discharging characteristics of supercooled sodium acetate trihydrate induced by local cooling

Huili WANG(),Guobing ZHOU()   

  1. School of Energy, Power and Mechanic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2019-04-17 Revised:2019-05-21 Online:2019-09-05 Published:2019-09-23
  • Contact: Guobing ZHOU E-mail:w17073224271@163.com;zhougb@ncepu.edu.cn

摘要:

利用半导体制冷局部低温诱发稳定过冷的三水醋酸钠溶液凝固,实验研究不同含水量、样品质量、输入功率等条件下过冷溶液结晶诱导期及释热特性。结果表明:随样品含水量增加,整体呈现结晶诱导期增加,释热温度下降的趋势,含水量44%作为较理想的体系配比,结晶诱导期为2 min,稳定放热温度达52.8℃;诱发过程中制冷装置输入功率越大,容器壁面降温越快,较容易触发,功率为280 W的结晶诱导期是功率为70 W的 1/3;样品质量越大,结晶诱导期越短,稳定放热温度相对较高,放热时间趋长。实验结果为稳定过冷水合盐局部低温诱发凝固释能系统设计提供依据。

关键词: 局部低温, 三水醋酸钠, 稳定过冷, 结晶, 相变, 含水量, 太阳能

Abstract:

Experiments are performed on the effect of local cooling by thermoelectric cooler on triggering solidification of supercooled sodium acetate trihydrate (SAT). Factors such as the water content, the SAT sample mass as well as the input power of the thermoelectric cooler are examined about their effects on the crystallization activation and discharging characteristics. The results showed that with the increase of water content, the overall crystallization induction period increased, the heat release temperature decreased, and the water content of 44% was used as the ideal system ratio. The crystallization induction period was 2 min and the stable exothermic temperature was 52.8℃. The higher the input power(P) is, the faster the unit is cooled and the induction time period for P=280 W is one third of that for P=70 W. The probability of nucleation of samples is increased for higher sample mass and then the induction time is shorter with higher discharging temperature and longer heat release time.

Key words: local cooling, sodium acetate trihydrate, stable supercooling, crystallization, phase change, water content, solar energy

中图分类号: 

  • TK 02

图1

实验装置简图"

图2

局部低温诱发过冷水合盐溶液凝固机理"

图3

两种冷却方式下壁面温度随时间变化曲线"

图4

循环过程中容器壁面温度随时间变化曲线"

图5

含水量44%触发过程容器壁面温度随时间变化曲线"

图6

不同含水量下样品壁面温度及平均诱导时间变化"

图7

不同样品质量下壁面温度及平均诱导时间变化"

图8

不同输入功率下壁面温度及平均诱导时间变化"

1 Schultz J M . Phase change material storage with supercooling[C]//Streicher W. IEA SHC Task 32—Advanced Storage Concepts for Solar and Low Energy Buildings. Austria: Graz University of Technology Austria, 2008: 68-84.
2 Streicher W . Final report of Subtask C “Phase Change Materials” The overview[R]. IEA Solar Heating and Cooling Programme Task 32—Advanced Storage Concepts for Solar And Low Energy Buildings. 2008.
3 Furbo S , Fan J H , Andersen E , et al . Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture[J]. Energy Procedia, 2012, 30(1): 260-269.
4 Furbo S , Dragsted J , Chen Z , et al . Towards seasonal heat storage based on stable super cooling of sodium acetate trihydrate[C]//EuroSun 2010 Congress Proceedings. Graz, Austria, 2010.
5 Zhou G B , Xiang Y T . Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage[J]. Solar Energy, 2017, 155: 1261-1272.
6 Dannemand M , Johansen J B , Kong W Q , et al . Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing stable supercooling[J]. Applied Energy, 2016, 177: 591-601.
7 Dannemand M , Dragsted J , Fan J H , et al . Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures[J]. Applied Energy, 2016, 169: 72-80.
8 Kong W Q , Dannemand M , Johansen J B , et al . Ageing stability of sodium acetate trihydrate with and without additives for seasonal heat storage[C] // ISES Solar World Congress. Daegu, Korea, 2015.
9 Cabeza L F , Svensson G , HieblerS, et al . Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material[J]. Applied Thermal Engineering, 2003, 23(13): 1697-1704.
10 崔文龙, 袁艳平, 孙亮亮, 等 . 三水合乙酸钠在相变单元的传热特性及其过冷度改善[J]. 化工学报, 2016, 67(S2): 149-158.
Cui W L , Yuan Y P , Sun L L , et al . Thermal property in phase-change units and improvement for supercoiling of sodium acetatetrihydrate[J]. CIESC Journal, 2016, 67(S2): 149-158.
11 张雪梅, 蔡路茵, 苏忠杰, 等 . 超声波对三水醋酸钠相分离及结晶的影响[J]. 化工学报, 2010, 61(1): 104-108.
Zhang X M , Cai L Y , Su Z J , et al . Effects of ultrasound on phase separation and crystallization of sodium acetate trihydrate[J]. CIESC Journal, 2010, 61(1): 104-108.
12 Cabeza L F , Illa J , Roca J , et al . Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 oC temperature range[J]. Material and Corrosion, 2001, 52(2): 140-146.
13 Zhou G B , Zhu M C , Xiang Y T . Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit[J]. Renewable Energy, 2018, 126: 537-544.
14 Rogerson M A , Cardoso S S S . Solidification in heat packs(Ⅲ): Metallic trigger[J]. AIChE Journal, 2003, 49(2): 522-529.
15 Araki N , Futamura M , Makino A , et al . Measurements of thermophysical properties of sodium acetate hydrate[J]. International Journal of Thermophysics, 1995, 16(6): 1455-1466.
16 Englmair G , Moser C , Furbo S , et al . Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system[J]. Applied Energy, 2018, 221: 522-534.
17 潘利红, 黄利维, 岳桥, 等 . 振动对无机盐相变材料过冷度的影响[J]. 浙江工业大学学报, 2008, 36(6): 655-658.
Pan L H , Huang L W , Yue Q , et al . Influence of vibration on the supercooling relex of inorganic salt solution as a phase change material[J]. Journal of Zhejiang University of Technology, 2008, 36(6): 655-658.
18 Seo K , Suzuki S , Kinoshita T , et al . Effect of ultrasonic irradiation on the crystallization of sodium acetate trihydrate utilized as heat storage material[J]. Chemical Engineering and Technology, 2012, 35(6): 1013-1016.
19 Sandnes B . Exergy efficient production, storage and distribution of solar energy[D]. Oslo : University of Oslo, 2003.
20 Englmair G , Jiang Y L , Dannemand M , et al . Crystallization by local cooling of supercooled sodium acetate trihydrate composites for long-term heat storage[J]. Energy and Buildings, 2018, 180: 159-171.
21 Disalvo F J . Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
22 Bansal P K , Martin A . Comparative study vapor compression, thermoelectric and absorption refrigerators[J]. International Journal of Energy Research, 2015, 24(2): 93-107.
23 Jin X , Medina M A , Zhang X , et al . Phase-change characteristic analysis of partially melted sodium acetate trihydrate using DSC[J]. International Journal of Thermophysics, 2014, 35(1): 45-52.
24 丁益民, 阎立诚 . 水合盐储热材料的成核作用[J]. 化学物理学报, 1996, (1): 83-86.
Ding Y M , Yan L C . Nucleation of salt-hydrate as the thermal energy storage material[J]. Chinese Journal of Chemical Physics, 1996, (1): 83-86.
25 Chinese Pharmacopoeia Commission . Pharmacopoeia of the People’s Republic of China 2010 Edition[M]. Beijing: China Medical Science Press, 2010.
26 Sharma S K , Jotshi C K , Kumar S . Thermal stability of sodium salt hydrates for solar energy storage applications[J]. Solar Energy, 1990, 45(3): 177-181.
27 Keinänen M . Latent heat recovery from supercooled sodium acetate trihydrate using a brush heat exchanger[D]. Espoo: Helsinki University of Technology, 2007.
28 Kong W Q , Dannemand M , Berg Johansen J , et al . Experimental investigations on phase separation for different heights of sodium acetate water mixtures under different conditions[J]. Applied Thermal Engineering, 2019, 148: 796-805.
29 Rad F M , Fung A S . Solar community heating and cooling system with borehole thermal energy storage—review of systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1550-1561.
30 Dietz P L , Brukner J S , Hollingsworth C A . Linear crystallization velocities of sodium acetate in supersaturated solutions[J]. The Journal of Physical Chemistry, 1957, 61(7): 944-948.
31 Rauls M , Bartosch K , Kind M , et al . The influence of impurities on crystallization kinetics — a case study on ammonium sulfate[J]. Journal of Crystal Growth, 2000, 213(1): 116-128.
32 Wei L L , Kenichi O . Supercooling and solidification behavior of phase change[J]. ISIJ International, 2010, 50 (9): 1265-1269.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 李艺群, 罗春欢, 李娜, 苏庆泉. 基于吸收式制冷循环的CaCl2-LiCl/H2O工质对研究[J]. 化工学报, 2019, 70(9): 3483-3494.
[3] 陈琳, 武亚飞, 车黎明. 一种测量石蜡相变乳液过冷度的新方法:平衡态比容法[J]. 化工学报, 2019, 70(9): 3370-3376.
[4] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564.
[5] 李冠男, 贺高红, 姜晓滨. 膜结晶处理高浓度Na+、Mg2+//Cl--H2O溶液的结晶调控[J]. 化工学报, 2019, 70(9): 3412-3420.
[6] 张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544.
[7] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[8] 白炳林, 杨晓宏, 田瑞, 史盼敬, 李达. 太阳能光热-光电中空纤维真空膜蒸馏系统理论与实验研究[J]. 化工学报, 2019, 70(9): 3517-3526.
[9] 苗苗, 孔皓, 张缦, 吴玉新, 杨海瑞, 张建胜. 多元煤灰灰熔点及晶体组成特性研究[J]. 化工学报, 2019, 70(8): 2909-2918.
[10] 闫振汉, 喻健良, 闫兴清, 陈庆, 曹琦, 刘少荣. 密相CO2管道泄漏失压过程热力学特性[J]. 化工学报, 2019, 70(8): 3071-3077.
[11] 高泽世, 姚元鹏, 吴慧英. 球形容器内石蜡非约束融化特性实验[J]. 化工学报, 2019, 70(7): 2480-2487.
[12] 贾蒲悦, 武卫东, 王益聪, 张兵. 新型复合低温相变蓄冷材料的研制及热物性优化[J]. 化工学报, 2019, 70(7): 2758-2765.
[13] 谷莹露, 刘会娥, 陈爽, 王龙, 刘宇童. 油水比对阴离子型微乳液相行为的影响[J]. 化工学报, 2019, 70(7): 2626-2635.
[14] 赵柏岑, 丁静, 魏小兰, 刘彬, 陆建峰, 王维龙. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
[15] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[4] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[5] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[6] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[7] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[8] . 2013年 第64卷 第1期目 次[J]. 化工学报, 2013, 64(1): 0 .
[9] 陈家镛. 化工和湿法冶金:两个学科分不开——庆贺《化工学报》创刊90周年[J]. 化工学报, 2013, 64(1): 1 .
[10] 任南琪, 周显娇, 郭婉茜, 杨珊珊. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84 -94 .