化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2512-2519.doi: 10.11949/0438-1157.20190250

• 流体力学与传递现象 • 上一篇    下一篇

非线性振动下水平通道气液两相流动

周云龙(),常赫(),刘起超   

  1. 东北电力大学能源与动力工程学院,吉林省 吉林市 132012
  • 收稿日期:2019-03-18 修回日期:2019-04-24 出版日期:2019-07-05 发布日期:2019-07-22
  • 通讯作者: 常赫 E-mail:18843218263@163.com;469940713@qq.com
  • 作者简介:周云龙(1960—),男,博士,教授,<email>18843218263@163.com</email>
  • 基金资助:
    国家自然科学基金项目(5154608,51776033)

Gas-liquid two-phase flow in horizontal channel under nonlinear vibration

Yunlong ZHOU(),He CHANG(),Qichao LIU   

  1. College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
  • Received:2019-03-18 Revised:2019-04-24 Online:2019-07-05 Published:2019-07-22
  • Contact: He CHANG E-mail:18843218263@163.com;469940713@qq.com

摘要:

将振动装置与气液两相流实验回路相结合,对非线性振动工况下水平通道内气液两相流进行实验研究。重点考察了不同振动参数对流型转换界限及摩擦压降的影响。流型图表明,非线性振动工况和稳态工况下的气液两相流动形式不同,提高振动的频率和幅度会导致流型转换界限发生改变。由实验得到的气液界面分布结果表明,振动频率对相界面波动程度有显著影响,而振动幅度则主要影响截面含气率。最后对比了非线性振动工况下的摩擦压降和经验公式的计算结果,发现两者在数值和分布上均无明显差异,说明稳态下两相流摩擦压降计算公式同样适用于非线性振动工况。

关键词: 水平通道, 气液两相流, 非线性振动, 摩擦压降

Abstract:

The vibrating device is combined with the gas-liquid two-phase flow experimental loop to carry out experimental research on the gas-liquid two-phase flow in the horizontal channel under nonlinear vibration conditions. The influences of various vibration parameters on flow regime transition line and frictional pressure drop were analyzed. The flow transition boundary diagrams illustrate that flow conditions under nonlinear vibration is different from that under steady state. The whole flow pattern has an outward expansion tendency with the slug flow as the center as vibration frequency or amplitude increases. Vibration frequency has a significant effect on fluctuation degree of gas-liquid interphase, whereas vibration amplitude mainly affects void fraction. There was no obvious difference on the values and distribution between the calculation deviations in fluid flow under nonlinear vibration and the calculation deviations in fluid flow under steady state by using different empirical formulas. The results show that the empirical correlations for frictional pressure drop of two-phase flow under steady state are also suitable for the calculation of frictional pressure drop of gas-liquid two-phase flow under nonlinear vibration.

Key words: horizontal channel, gas-liquid two-phase flow, nonlinear vibration, frictional pressure drop

中图分类号: 

  • TB 123

图1

实验回路"

图2

振动装置"

图3

不同工况下流型图对比"

图4

振动频率对流型转换界限的影响"

图5

振动幅度对流型转换界限的影响"

图6

振动对瞬时摩擦压降的影响"

图7

水平通道内摩擦压降计算结果比较"

1 刘国强, 孙立成, 阎昌琪. 竖直圆管内泡状流界面参数分布特性[J]. 原子能科学技术, 2014, 48(7): 1176-1181.
LiuG Q, SunL C, YanC Q. Interfacial parameter distribution of bubbly flow in vertical circular tube[J]. Atomic Energy Science and Technology, 2014, 48(7): 1176-1181.
2 IshidaT, YoritsuneT. Effects of ship motions on natural circulation of deep sea research reactor DRX[J]. Nuclear Engineering and Design, 2002, 215(1/2): 51-67.
3 HumphriesJ R, DaviesD. A floating desalination/ co-generation system using the KLT-40 reactor and Canadian RO desalination technology[C]//Proceedings of Advisory Group Meeting. Vienna: International Atomic Energy Agency, 1998.
4 PanovY K, PolunichevV I, ZverevK V. Nuclear floating power desalination complexes[C]//Proceedings of Four Technical Meeting. Vienna: International Atomic Energy Agency, 1998.
5 峦峰, 阎昌琪. 摇摆状态下水平管内气-水两相流的流型研究[J]. 核动力工程, 2007, 28(2): 19-23.
LuanF, YanC Q. Study on the flow pattern of gas water two phase flow in a horizontal pipe in a swing state[J]. Nuclear Power Engineering, 2007, 28(2): 19-23.
6 TanS C, WangZ W, ChangW, et al. Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions[J]. Experimental Thermal and Fluid Science, 2013, 50: 69-78.
7 ChenS W, LiuY, HinikiT. Experimental study of air-water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 168-181.
8 马晓旭, 田茂诚, 张冠敏. 水平管内气液两相流诱导振动的数值模拟[J]. 振动与冲击, 2016, 35(16): 204-210.
MaX X, TianM C, ZhangG M. Numerical investigation on gas-liquid two-phase flow-induced vibration in a horizontal tube[J]. Journal of Vibration and Shock, 2016, 35(16): 204-210.
9 李金辉, 卢剑伟, 姜俊昭. 液体晃动对槽罐车摆振系统动力学响应的影响分析[J]. 振动与冲击, 2018, 37(2): 135-141.
LiJ H, LuJ W, JiangJ Z. Analysis of tank truck shimmy with consideration of liquid sloshing[J]. Journal of Vibration and Shock, 2018, 37(2): 135-141.
10 陈冲, 高濮珍. 摇摆工况下窄矩形通道内两相沸腾摩擦压降特性[J]. 化工学报, 2015, 66(2): 3874-3880.
ChenC, GaoP Z. Frictional pressure drop characteristics of two-phase boiling in narrow rectangular channel under swing condition[J]. CIESC Journal, 2015, 66(2):3874-3880.
11 周世忠, 朱琳, 张阳波. 大流量下倾斜管内气液两相流实验研究[J]. 当代化工, 2016, 45(3): 504-506.
ZhouS Z, ZhuL, ZhangY B. Experimental study of two-phase flow in inclined pipe under high gas-liquid flow[J]. Contemporary Chemical Industry, 2016, 45(3): 504-506.
12 周云龙, 李珊珊. 起伏振动状态下倾斜管内两相流多尺度熵分析[J]. 化工学报, 2018, 69(5): 1884-1891.
ZhouY L, LiS S. Multi-scale entropy analysis of two-phase flow in inclined pipe under vibration condition [J]. CIESC Journal, 2018, 69(5): 1884-1891.
13 TalleyJ D, WoroszT, KimS. Characterization of horizontal air-water two-phase flow in a round pipe (Ⅱ): Measurement of local two-phase parameters in bubbly flow[J]. International Journal of Multiphase Flow, 2015, 76: 223-236.
14 肖秀, 朱庆子, 王冠轶. 振动工况下环管内气液两相流参数分布实验研究[J]. 原子能科学技术, 2017, 51(1): 19-25.
XiaoX, ZhuQ Z, WangG Y. Experiment investigation on two-phase flow parameter distribution in annular channel under vibration condition[J]. Atomic Energy Science and Technology, 2017, 51(1): 19-25.
15 PendayalaR, JayatinS, BalkrishinanA R. Convective heat transfer in single-phase flow in a vertical tube to axial low frequency oscillations[J]. Heat Mass Transfer, 2008, 44: 857-864.
16 PendayalaR, JayatinS, BalkrishinanA R. Flow and pressure drop fluctuations in vertical tube subject to low frequency oscillations[J]. Nuclear Engineering and Design, 2008, 238(1): 178-187.
17 周云龙, 尹洪梅, 丁会晓. 多尺度熵在棒束通道气液两相流压差信号分析中的应用[J]. 化工学报, 2016, 67(9): 3625-3632.
ZhouY L, YinH M, DingH X. Application of multi-scale entropy in analyzing pressure difference signals of gas-liquid two-phase flow in rod bundled channel[J]. CIESC Journal, 2016, 67(9): 3625-3632.
18 丁浩, 黄志尧, 李海青. 气液两相流压差波动的Hilbert-Huang变换特性[J]. 化工学报, 2005, 56(12): 2294-2302.
DingH, HuangZ Y, LiH Q. Property of differential pressure fluctuation signal of gas-liquid two-phase flow based on Hilbert-Huang transform[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(12): 2294-2302.
19 ChenS W, HibikiT, IshimiM. Experimental study of adiabatic two-phase flow parameter in an annular channel under low-frequency vibration[J]. Journal of Engineering for Gas Turbines and Powers, 2014, 136: 032501.
20 周云龙, 赵盘, 杨宁. 振动状态下水平管内气液两相流流型转变的实验研究[J]. 热能动力工程, 2017, 32(6): 617-22.
ZhouY L, ZhaoP, YangN. Experimental study on flow pattern transition of gas liquid two-phase in horizontal tubes under vibration condition[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 17-22.
21 周云龙, 李珊珊. 起伏振动状态下倾斜管内气液两相流型实验研究[J]. 原子能科学技术, 2018, 5(2): 262-268.
ZhouY L, LiS S. Experiment investigation on gas-liquid two-phase flow pattern in inclined pipe under fluctuant vibration condition[J]. Atomic Energy Science and Technology, 2018, 52(2): 262-268.
22 RanK, KimW, BajorekS. Effects of pipe size on horizontal two-phase flow: flow regimes, pressure drop, two-phase flow parameters, and drift-flux analysis[J]. Experimental Thermal and Fluid Science, 2018, 96: 75-89.
23 MandhaneJ M, GregoryA, AsisK. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1: 537-553.
24 GangH, XiaoY. Experimental research of bubble characteristics in narrow rectangular channel under heaving motion[J]. International Journal of Thermal Sciences, 2012, 51: 42-50.
25 刘建华, 王宏光, 韩铁鹰. 管内壁面振动对流场与传热影响的模拟研究[J]. 热能动力工程, 2017, 32(S1):14-20.
LiuJ H, WangH G, HanT Y. Numerical study of the influences of wall vibration on the flow and heat exchange in tube[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(S1): 14-20.
26 CatalinaP, PailoW. Effect of forced flow oscillations on churn and annular flow in a long vertical tube[J]. Experimental Thermal and Fluid Science, 2017, 81: 345-357.
27 贾辉, 谭思超, 高濮珍. 不稳定条件下水平管单相水流动阻力特性实验研究[J]. 原子能科学技术, 2011, 45(2): 168-173.
JiaH, TanS C, GaoP Z. Experimental study on horizontal single phase water flow resistance characteristics under unsteady flow condition[J]. Atomic Energy Science and Technology, 2011, 45(2): 468-173.
28 LockhartR W, MartinelliR C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45: 39-48.
29 ChisholmD. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10: 1767-1778.
30 AkagawaK. The flow of the mixture of air and water(Ⅲ):The friction drops in horizontal, inclined and vertical tubes[J]. Transactions of Japan Society Mechanical Engineering, 1957, 23: 292-298.
[1] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[2] 周闻, 王康松, 鄂承林, 卢春喜. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573.
[3] 曲江源, 齐娜娜, 关彦军, 滕阳, 徐文青, 朱廷钰, 张锴. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
[4] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
[5] 程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382.
[6] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[7] 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645.
[8] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[9] 牛守梓, 吴海涛, 徐英, 李建立, 张涛. 基于文丘里管的页岩气试采期段塞流测量补偿方法[J]. 化工学报, 2018, 69(8): 3364-3372.
[10] 敬加强, 尹然, 马孝亮, 孙杰, 吴嬉. 水平管稠油掺气减阻模拟实验[J]. 化工学报, 2018, 69(8): 3398-3407.
[11] 姜鹏, 王琨, 谯敏, 李俊峰, 薛云翔, 黄卫星. 气液两相并流下行通过堆叠筛板填料的压降特性[J]. 化工学报, 2018, 69(8): 3373-3382.
[12] 王鑫, 李晓磊, 李美慧, 桑勋源, 汪太阳. 基于聚类方法的运动气泡声发射信号分析[J]. 化工学报, 2018, 69(7): 2964-2971.
[13] 赵宁, 王配配, 郭素娜, 方立德, 王东星, 陈雪. 垂直管气液两相环状流的界面扰动波速度[J]. 化工学报, 2018, 69(7): 2926-2934.
[14] 张文超, 焦琦, 周云龙, 杨美, 金光远, 杜利鹏. 矩形通道内低压自然循环压降型脉动及其复合型脉动可视化研究[J]. 化工学报, 2018, 69(6): 2455-2462.
[15] 蔡博, 夏国栋, 贾玉婷, 周燕昭, 宗露香. 矩形截面螺旋通道内气液两相流局部含气率分布实验研究[J]. 化工学报, 2018, 69(6): 2474-2480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李盘生. 工业区大气中低浓度二氧化硫在高湿度时光化学反应速率及其对视距影响 [J]. , 1957, 8(2): 130 -136 .
[2] 李冬杰, 陆君, 王宇新. PEMFC用石墨/酚醛树脂复合板的膨胀石墨表面改性 [J]. 化工学报, 2008, 59(9): 2356 -2360 .
[3] 赵淑珍,卢元铎,靳金荣. 二氧化铅电极的研制——PbO_2/掺Sb-SnO_2/Ti阳极 [J]. , 1981, 32(2): 135 -140 .
[4] 雷夏,费维扬,沈忠耀,汪家鼎. 一种由稳态浓度剖面计算萃取柱中轴向混合系数和“真实”传质单元高度的方法 [J]. , 1982, 33(4): 368 -376 .
[5] 张煜, 王丽军, 李希. 湍动浆态床流体力学研究(Ⅱ)轴向浆料速度的径向分布 [J]. 化工学报, 2008, 59(12): 3003 -3009 .
[6] 薄翠梅, 乔旭, 张广明, 张湜, 杨海荣. 基于ICA-SVM的复杂化工过程集成故障诊断方法 [J]. 化工学报, 2009, 60(9): 2259 -2264 .
[7] 尹春华, 刘江帆, 高明. 维生素E琥珀酸酯的酶促合成及优化 [J]. 化工学报, 2010, 61(4): 935 -941 .
[8] 尹晓红, 孙长江, 辛峰, 张凤宝, 王世铭, 张国亮. 转筒式负载膜光催化水处理器的设计与模拟 [J]. 化工学报, 2008, 59(1): 77 -83 .
[9] 谢文玉, 陈建军, 钟理, 钟华文. 循环生物曝气滤池和过滤组合工艺处理炼油轻度污染废水 [J]. 化工学报, 2008, 59(5): 1251 -1256 .
[10] 胡朝发, 贾力. 脉动热管气液塞振荡运动模型 [J]. 化工学报, 2011, 62(S1): 113 -117 .