化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 220-227.doi: 10.11949/0438-1157.20190247

• 流体力学与传递现象 • 上一篇    下一篇

双缸滚动转子式压缩机采暖热泵低温制热性能

尹应德1,2,3(),朱冬生1,2,3,刘世杰1,2,3,叶周1,2,3,王飞扬1,2,3   

  1. 1. 中国科学院广州能源研究所, 广东 广州 510640
    2. 中国科学院可再生能源重点实验室, 广东 广州 510640
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
  • 收稿日期:2019-03-18 修回日期:2019-06-14 出版日期:2019-09-05 发布日期:2019-11-07
  • 通讯作者: 尹应德 E-mail:yinyd@ms.giec.ac.cn
  • 作者简介:尹应德(1978—),男,博士,工程师,yinyd@ms.giec.ac.cn
  • 基金资助:
    湖北省中国科学院科技合作专项项目(2018-916-000-009);中国科学院可再生能源重点实验室基金项目;2017佛山市顺德区科技计划项目;2017容桂科技计划项目(容桂经发〔2017〕27号)

Heating performance of space heating heat pump based on dual-cylinder rotary compressor in ultra-low temperature

Yingde YIN1,2,3(),Dongsheng ZHU1,2,3,Shijie LIU1,2,3,Zhou YE1,2,3,Feiyang WANG1,2,3   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
  • Received:2019-03-18 Revised:2019-06-14 Online:2019-09-05 Published:2019-11-07
  • Contact: Yingde YIN E-mail:yinyd@ms.giec.ac.cn

摘要:

对双缸滚动转子式压缩机采暖热泵在环境温度(Tod)为-30~0℃,出水温度(Two)为41~50℃范围内的制热进行测试。研究表明:外界环境温度对排气温度、蒸发温度影响很大,对冷凝温度影响很小;热水出水温度对冷凝温度影响很大,对排气温度、蒸发温度影响很小。随着外界环境温度的降低,采暖热泵的制热量急剧下降,当Two=41℃时,Tod从0℃下降到-30℃,制热量的降幅达62.16%;随着出水温度的升高,采暖热泵的制热量下降缓慢,当Tod=0℃时,Two从41℃上升到45℃,制热量降幅仅为5.61%;外界环境温度对COPh值的影响也显著,当Two=41℃时,Tod从0℃下降到-30℃,COPh值从2.94下降到1.38,降幅达53.06%。双缸滚动转子式压缩机采暖热泵应用于-30~0℃的低温工况下,具有良好的实用价值。

关键词: 低环境温度, 采暖热泵, 传热, 压缩机, 相变, 性能系数

Abstract:

The heating performance of space heating heat pump (SHHP) with dual-cylinder rotary compressor was tested at low ambient temperature (Tod) in the range of -30—0℃, and water outlet temperature (Two) in the range of 41—50℃. The results show that ambient temperature has great influence on its discharge temperature and evaporating temperature, but little on condensing temperature; hot water outlet temperature has great influence on its condensing temperature, and little influence on its discharge temperature and evaporating temperature. With the decrease of ambient temperature, the heat capacity of SHHP decreases sharply, when Two = 41℃, Tod decreases from 0℃ to -30℃, and the heat capacity decreases by 62.16%. With the increase of outlet temperature, the heat capacity of SHHP decreases slowly, when Tod = 0℃, Two rises from 41℃ to 45℃, the heat capacity decreases by only 5.61%. The influence of ambient temperature on COPh value is also obvious, when Two = 41℃, Tod decreases from 0℃ to -30℃, COPh decreases from 2.94 to 1.38, a drop of 53.06%. The SHHP with dual-cylinder rotary compressor has good practical value to be applied in low temperature condition of -30—0℃.

Key words: low ambient temperature, space heating heat pump, heat transfer, compressor, phase change, coefficient of performance

中图分类号: 

  • TB 61+5

图1

双缸滚动转子式压缩机的剖面"

图2

测试系统"

表1

实验测试工况"

Operating mode

(heating)

Outdoor
Tdb/℃Twb/℃
Case 10-3
Case 2-6-8
Case 3-12-14
Case 4-20
Case 5-25
Case 6-30

表2

名义工况性能测试"

Operating modeOutdoor

Heating water outlet

Two/℃

COPh
Tdb/℃Twb/℃
heating-12-14412.20

图3

排气温度随干球温度和出水温度变化"

图4

蒸发温度随干球温度和出水温度变化"

图5

冷凝温度随干球温度和出水温度变化"

图6

制热能力随干球温度和出水温度变化"

图7

消耗功率随干球温度和出水温度变化"

图8

COP值随干球温度和出水温度变化"

1 江亿, 杨旭东, 单明, 等. 中国建筑节能年度发展研究报告2016[M]. 北京: 中国建筑工业出版社, 2016: 7-15.
JiangY, YangX D, ShanM, et al. Annual Report on China Energy Efficiency 2016[M]. Beijing: China Architecture & Building Press, 2016: 7-15.
2 生态环境部就2018年—2019年打赢蓝天保卫战重点区域强化督查答问[EB/OL].[2018-06-09]. http: //
Question and Answer by the Ministry of Ecology and Environment on Strengthening Supervision over Key Areas of Winning the Blue Sky Defense War from 2018 to 2019 [EB/OL]. [2018-06-09]. http: //
3 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54.
WangF H, WangZ H, ZhengY X, et al. Research progress and prospect of air source heat pump in low temperature environment [J]. Journal of Refrigeration, 2013, 34(5): 47-54.
4 LongZ, YiQ J, JianK D, et al. Advances in vapor compression air source heat pump system in cold regions: a review[J]. Renew. Sust. Energ. Rev., 2018, 81: 353-365.
5 MaG Y, ZhaoH X. Experimental study of a heat pump system with flash-tank coupled with scroll compressor [J]. Energ. Buildings, 2008, 40(5): 697-701.
6 HeoJ, MinW J, BaekC, et al. Comparison of the heating performance of air-source heat pumps using various types of refrigerant injection[J]. Int. J. Refrig., 2011, 34(2): 444-453.
7 LyuX, YanG, YuJ. Solar-assisted auto-cascade heat pump cycle with zeotropic mixture R32/R290 for small water heaters [J]. Renew. Energ., 2015, 76: 167-172.
8 AdhikariR S, AsteN, ManfrenM, et al. Energy savings through variable speed compressor heatpump systems [J]. Energy Procedia, 2012, 14: 1337-1342.
9 BanisterC J, CollinsM R. Development and performance of a dual tank solar-assisted heat pump system [J]. Appl. Energ., 2015, 149: 125-132.
10 KoY, ParkS, JinS, et al. The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle[J]. Appl. Energ., 2013, 104: 187-196.
11 YanG, JiaQ, BaiT. Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions [J]. Int. J. Refrig., 2016, 62: 232-241.
12 王宝龙, 韩林俊, 石文星, 等. 基于制冷剂泄出的涡旋压缩机容量调节技术[J].制冷学报, 2010, 31(2): 7-10.
WangB L, HanL J, ShiW X, et al. Modulating technology for scroll compressor with refrigerant release [J]. Journal of Refrigeration, 2010, 31(2): 7-10.
13 张海锋. R410A直流变频旋转压缩机年度运行效率及可靠性研究 [D]. 西安: 西安交通大学, 2013.
ZhangH F. Study on the annual efficiency and reliability of R410A variable speed rotary compressors [D].Xi’an: Xi’an Jiaotong University, 2013.
14 马敏, 黄波, 耿玮, 等. 滚动转子式补气压缩机在热泵系统中的实验研究[J].制冷学报, 2012, 33(4): 52-54.
MaM, HuangB, GengW, et al. Performance investigation of the vapor-injection rotary compressor for residential heat pump Systems [J]. Journal of Refrigeration, 2012, 33(4): 52-54.
15 贾庆磊, 冯利伟, 晏刚. 带中间补气的滚动转子式压缩系统制热性能的实验研究[J].制冷学报, 2015, 36(2): 65-70.
JiaQ L, FengL W, YanG, et al. Experimental research on heating performance of rotary compression system with vapor injection [J]. Journal of Refrigeration, 2015, 36(2): 65-70.
16 BaekC, HeoJ, JungJ. Effects of the cylinder volume ratio of a twin rotary compressor on the heating performance of a vapor injection CO2 cycle[J]. Appl. Therm. Eng., 2014, 67: 89-96.
17 HeoJ, MinW J, BaekC, et al. Comparison of the heating performance of air-source heat pumps using various types of refrigerant injection[J]. Int. J. Refrig., 2011, 34(2): 444-453.
18 HeoJ, MinW J, KimY. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions [J]. Int. J. Refrig., 2010, 33(4): 848-855.
19 HeoJ, YunR, KimY. Simulations on the performance of a vapor-injection heat pump for different cylinder volume ratios of a twin rotary compressor [J]. Int. J. Refrig., 2013, 36(3): 730-744.
20 HeoJ, KangH, KimY. Optimum cycle control of a two-stage injection heat pump with a double expansion sub-cooler [J]. Int. J. Refrig., 2012, 35(1): 58-67.
21 吴建华, 胡杰浩, 陈昂, 等. 全封闭R32 滚动活塞压缩机的热分析[J]. 西安交通大学学报, 2015, 49(3): 14-18.
WuJ H, HuJ H, ChenA, et al. Thermal analysis for hermetic R32 rolling piston compressor [J]. Journal of Xi’an Jiaotong University, 2015, 49(3): 14-18.
22 虞中旸, 陶乐仁, 何俊, 等. R32变频滚动转子压缩机变工况模型及运行特性[J]. 制冷学报, 2018, 39(3): 58-64.
YuZ Y, TaoL R, HeJ, et al. R32 operation performance and modeling for R32 variable frequency rotary compressor under varied operating conditions [J]. Journal of Refrigeration, 2018, 39(3): 58-64.
23 刘琦, 马国远, 许树学. 单机双级滚动活塞压缩机热泵系统的性能特性[J].化工学报, 2013, 64(10): 3599-3605.
LiuQ, MaG Y, XuS X. Performance characteristics of two-stage compression heat pump system coupled with dual-cylinder rolling piston compressor [J]. CIESC Journal, 2013, 64(10): 3599-3605.
24 孙晋飞, 朱冬生, 尹应德, 等. 单缸补气转子式压缩机在热泵系统中制热性能分析[J].化工学报, 2017, 68(9): 3551-3557.
SunJ F, ZhuD S, YinY D, et al. Heating performance of single cylinder vapor injection rotary compressor applying in air-source heat pump system [J]. CIESC Journal, 2017, 68 (9): 3551-3557.
25 尹应德, 朱冬生, 孙晋飞, 等. 基于准二级压缩空气源热泵热水器的热力性能实验研究[J]. 高校化学工程学报, 2018, 32(1): 77-83.
YinY D, ZhuD S, SunJ F. Experimental study on thermodynamic performance of air source heat pump water heaters based on quasi two stage compression [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 77-83.
26 孙晋飞, 朱冬生, 李修真, 等. 基于滚动转子式补气压缩机的准二级压缩热泵系统热力学分析[J]. 高校化学工程学报, 2018, 32(3): 499-506.
SunJ F, ZhuD S, LiX Z, et al. Thermodynamic analysis of quasi two-stage compression heat pump with a vapor injection rotary compressor [J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(3): 499-506.
27 SunJ F, ZhuD S, YinY D, et al. Experimental investigation of the heating performance of refrigerant injection heat pump with a single-cylinder inverter-driven rotary compressor [J]. J. Therm. Anal. Calorim., 2018, 133(3): 1579-1588.
28 SunJ F, ZhuD S, YinY D, et al. Experimental research on the heating performance of a single cylinder refrigerant injection rotary compressor heat pump with flash tank [J]. Sci. China Technol. Sci., 2018, 61(12): 1814-1823.
29 马国远. 制冷压缩机及其应用[M]. 北京: 中国建筑工业出版社, 2008: 4-6.
MaG Y. Refrigeration Compressor and Application [M]. Beijing: China Architecture& Building Press, 2008: 4-6.
30 张秀平, 王汝金, 昝世超, 等. 蒸气压缩循环冷水(热泵)机组性能试验方法(GBT 10870—2014) [S]. 北京: 中国标准出版社, 20144-8.
ZhangX P, WangR J, ZanS C, et al. The methods of performance test for water chilling (heat pump) packages using the vapor compression cycle (GBT 10870—2014) [S]. Beijing: China Standard Press, 20144-8.
31 MoffatR J. Using uncertainty analysis in the planning of an experiment [J]. J. Fluid Eng., 1985, 107(2): 173-178.
32 KlineS J, McclintockF A. Describing uncertainties in single-sample experiment [J]. ASME Mechanical Engineering, 1953, 75: 3-8.
[1] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[2] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[3] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[4] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[5] 徐阳,郑章靖,李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[6] 蒋二辉,张东伟,周俊杰,沈超,魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[7] 于帆, 张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[8] 侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
[9] 谈周妥, 郭志罡, 杨剑, 王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[10] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[11] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[12] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[13] 王慧丽, 周国兵. 局部低温诱发过冷三水醋酸钠释能特性实验研究[J]. 化工学报, 2019, 70(9): 3346-3352.
[14] 白炳林, 杨晓宏, 田瑞, 史盼敬, 李达. 太阳能光热-光电中空纤维真空膜蒸馏系统理论与实验研究[J]. 化工学报, 2019, 70(9): 3517-3526.
[15] 李安军, 陈晓庆, 李健, 黄超, 周振, 卢奇. 两种波纹深度板片传热及阻力特性的对比实验研究[J]. 化工学报, 2019, 70(9): 3377-3384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 潘春妹, 闵健, 刘心洪, 高正明. Investigation of Fluid Flow in a Dual Rushton Impeller Stirred Tank Using Particle Image Velocimetry[J]. CIESC Journal, 2008, 16(5): 693 -699 .
[2] 龚行楚, 吕阳成, 李牧, 马雪峰, 倪前银, 骆广生. Selection and Evaluation of a New Extractant for Caprolactam Extraction[J]. CIESC Journal, 2008, 16(6): 876 -880 .
[3] 李修亮, 苏宏业, 褚健. Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine[J]. CIESC Journal, 2009, 17(1): 95 -99 .
[4] 赵超, 苏宏业, 古勇, 褚建. A Pragmatic Approach for Assessing the Economic Performance of Model Predictive Control Systems and Its Industrial Application[J]. CIESC Journal, 2009, 17(2): 241 -250 .
[5] 姜春阳, 邱彤, 赵劲松, 陈丙珍. Gross Error Detection and Identification Based on Parameter Estimation for Dynamic Systems[J]. CIESC Journal, 2009, 17(3): 460 -467 .
[6] 罗宁, 卢英妹, 江燕斌. Solubility of Paclitaxel in Mixtures of Dichloromethane and Supercritical Carbon Dioxide [J]. CIESC Journal, 2011, 19(4): 558 -564 .
[7] 刘宗章,张敏华,李传兆,钱胜华,谈遒. 双酚A-苯酚加合物固相分解反应脱酚的工艺研究 [J]. CIESC Journal, 1999, 50(1): 108 -113 .
[8] 赵成业;刘兴高.

自适应粒子群优化算法在聚丙烯熔融指数预报上的应用

[J]. CIESC Journal, 2010, 61(8): 2030 -2034 .
[9] 邓超;史鹏飞.

基于径向基函数网络的MH/Ni电池建模及容量预测

[J]. CIESC Journal, 2004, 55(4): 673 -677 .
[10] 毕明树,王淑兰,丁信伟,罗正鸿. 无约束气云弱点火爆炸压力实验研究 [J]. CIESC Journal, 2001, 52(1): 68 -71 .