化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2564-2573.doi: 10.11949/0438-1157.20190213

• 分离工程 • 上一篇    下一篇

多旋臂气液旋流分离器压降特性试验

周闻(),王康松,鄂承林,卢春喜()   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 收稿日期:2019-03-11 修回日期:2019-05-01 出版日期:2019-07-05 发布日期:2019-07-22
  • 通讯作者: 卢春喜 E-mail:wzhou0818@126.com;lcx725@sina.com
  • 作者简介:周闻(1994—),男,博士研究生,<email>wzhou0818@126.com</email>
  • 基金资助:
    国家自然科学基金中石油联合基金重点项目(U1862202)

Multi-spiral gas-liquid vortex separator pressure drop characteristics test

Wen ZHOU(),Kangsong WANG,Chenglin E,Chunxi LU()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2019-03-11 Revised:2019-05-01 Online:2019-07-05 Published:2019-07-22
  • Contact: Chunxi LU E-mail:wzhou0818@126.com;lcx725@sina.com

摘要:

为强化气液离心分离过程,实现在大直径分离器内的气液旋流高效分离,设计构思了一套多旋臂气液旋流分离设备,为气液分离大型化设计提供了一种新思路。在纯气流条件及不同的旋流臂喷出气速下对该分离设备进出口静压差进行了测量,实验结果表明,旋流分离设备静压差在整个运行过程中较为稳定,有较强的可预测性,无量纲标准偏差维持在2%以内,总压降与旋流臂出口气速呈现出良好的平方关系。进一步将总压降分解为入口及旋臂摩擦损失、分离器空间内摩擦损失和出口管路摩擦损失三个部分进行详细测量,获得了各部分压降与旋流臂出口速度头的定量关联模型,发现分离器空间内摩擦阻力损失在总压降中占比最大。GLVS总压降主要受旋流臂出口气速影响,加入液相后对压降影响很小。该旋流分离设备的阻力系数与普通旋风分离器相当,根据四组不同结构尺寸的旋流头得到了阻力系数与旋流头关键设计参数的关联式,为进一步结构优化提供了参考。

关键词: 离心分离, 压降, 模型, 预测, 气液两相流

Abstract:

To strengthen the gas-liquid centrifugal separation process and realize the high-efficiency separation of gas-liquid cyclone in the large-diameter separator, a multi-rotor gas-liquid vortex separation equipment was designed, which provided a new design for gas-liquid separation and large-scale design. It can provide a new idea to design for large-scale gas-liquid separator. The pressure drop characteristics are investigated in a large scale cold-separator model. The static pressure drop between the inlet and outlet was measured at different velocities of the swirling arm under pure air flow conditions. The velocities of the swirling arm ranged from 5.65 to 16.95 m/s, which can cover the operating conditions of the industry gas liquid separator. The experimental results show that the pressure drop and the velocity of the swirling arm presence a square relationship. The dimensionless standard deviation of the static pressure drop is maintained within 2%. Furthermore, the total pressure drop includes three parts, i.e., loss in inlet friction, loss in the separation space, and loss in outlet pipeline. It is found that the pressure drop occur in the separation space is the largest. A model between the pressure drop of each part and the velocity head of the swirling arm was then given. The resistance coefficient of this rig is 16, it has no significant increase compared to common cyclone separators. The total pressure drop is closely related to the velocity of swirling arm. The change of total pressure drop is slight after feeding liquid. The forecast equation of the resistance coefficient was obtained based on the experimental of four similar structures with different sizes. Compared to real resistance coefficient, the predicted results error is less than 0.5%.

Key words: centrifugal separation, pressure drop, model, prediction, gas-liquid two-phase flow

中图分类号: 

  • TQ 028.2

图1

多旋臂气液旋流分离器实验流程图"

表1

实验参数设计"

入口气量/(m3/h)入口气速/(m/s)旋流臂出口气速/(m/s)出气管气速/(m/s)筒截面气速/(m/s)
10004.425.658.261.42
14006.197.9111.561.98
18007.9510.1714.862.55
22009.7212.4318.173.11
260011.4914.6921.473.68
300013.2516.9524.774.25

图2

不同入口气量下入口管表压随径向位置的变化"

图3

不同入口气量下出口管表压随径向位置的变化"

图4

不同入口气量下设备静压差随记录时间的波动状况"

图5

设备静压差随入口气量的变化"

表2

设备静压差稳定性表征"

入口气量/(m3/h)静压时均值/Pa标准差/Pa无量纲标准差/%
1000314.095.601.780
1400644.946.671.034
18001071.928.960.836
22001638.9512.140.741
26002215.5814.900.672
30002948.9219.360.657

图6

标准差随入口气量的变化"

图7

无量纲标准差随入口气量的变化"

图8

分段压降测量时测点位置"

表3

分段压降测量值"

Qi/(m3/h)P1/PaP2/PaP3/PaΔP′/PaΔP/Paε/%
100035.50198.91100.97335.38314.136.77
140081.54381.25207.48670.26644.923.93
1800116.73625.24338.881080.861071.950.83
2200170.80914.59508.541593.931638.922.75
2600225.511232.11717.442175.072215.561.83
3000304.891641.61978.522925.022948.930.81

图9

各段压降与旋流臂出口速度头的关系"

表4

各段压降阻力系数"

PressureξR2
P11.6630.9935
P28.9490.9984
P35.2000.9991
ΔP15.9890.9995

表5

旋流头结构参数汇总"

项目SVQS-1SVQS-2SVQS-3GLVS
进气管面积/mm278507850915666475
旋流臂出口面积/mm253765376930049152
筒截面面积/mm26280062800247683129775
筒内径/mm300300572500
隔流筒直径/mm160160380400
进气方向上行下行上行下行
S11.6811.6826.632.64
M8.008.0027.051.95
N0.530.530.660.80
阻力系数ξ2.462.5335.3415.99

图10

不同旋流头结构下的压降随旋流臂出口速度头的关系"

图11

加入液相后GLVS压降变化情况"

1 刘吉平, 罗文保. 费托合成循环换热分离器运行中存在问题及技术改造[J]. 科技创新与应用, 2017, (26): 46-47.
LiuJ P, LuoW B. Problems and technical transformation in the operation of Fischer-Tropsch synthesis cycle heat exchanger [J]. Science and Technology Innovation and Application, 2017, (26): 46-47.
2 LiangM, ShenQ, LiJ, et al. Efficient gas‐liquid cyclone device for recycled hydrogen in a hydrogenation unit[J]. Chemical Engineering & Technology, 2014, 37(6): 1072-1078.
3 KoopmanH K, KsoyA A K, ErtunZ, et al. An analytical model for droplet separation in vane separators and measurements of grade efficiency and pressure drop[J]. Nuclear Engineering and Design, 2014, 276: 98-106.
4 AliH, PlazaF, MannA. Numerical prediction of dust capture efficiency of a centrifugal wet scrubber[J]. AIChE Journal, 2018, 64(3): 1001-1012.
5 MentzerR A, GreenkornR A, ChaoK C. The principle of corresponding states and prediction of gas-liquid separation factors and thermodynamic properties: a review[J]. Separation Science, 1980, 15(9): 1613-1678.
6 杨晓惠, 刘仁桓, 金有海. 旋流过滤器的结构与性能研究[J]. 流体机械, 2008, 36(5): 10-13.
YangX H, LiuR H, JinY H. Study on structure and performance of cyclone filter[J]. Fluid Machinery, 2008, 36(5): 10-13.
7 WienckeB. Fundamental principles for sizing and design of gravity separators for industrial refrigeration[J]. International Journal of Refrigeration, 2011, 34(8): 2092-2108.
8 MovafaghianS, Jaua-MarturetJ A, MohanR S, et al. The effects of geometry, fluid properties and pressure the hydrodynamics of gas-liquid cylindrical cyclone separators[J]. International Journal of Multiphase Flow, 2000, 26(6): 999-1018.
9 SagotB, ForthommeA, YahiaL A A, et al. Experimental study of cyclone performance for blow-by gas cleaning applications[J]. Journal of Aerosol Science, 2017, 110: 53-69.
10 GaoX, ChenJ, FengJ, et al. Numerical and experimental investigations of the effects of the breakup of oil droplets on the performance of oil–gas cyclone separators in oil-injected compressor systems[J]. International Journal of Refrigeration, 2013, 36(7): 1894-1904.
11 ShanY, CoyleT W, MostaghimiJ. Numerical simulation of droplet breakup and collision in the solution precursor plasma spraying[J]. Journal of Thermal Spray Technology, 2007, 16(5/6): 698-704.
12 WangL, FengJ, GaoX, et al. Investigation on the oil–gas separation efficiency considering oil droplets breakup and collision in a swirling flow[J]. Chemical Engineering Research and Design, 2017, 117: 394-400.
13 YangJ, LiuC, ShengL, et al. A new pressure drop model of gas-liquid cyclone with innovative operation mode[J]. Chemical Engineering & Processing Process Intensification, 2015, 95: 256-266.
14 吴小林, 熊至宜, 姬忠礼. 天然气净化用多管旋风分离器的分离性能[J]. 过程工程学报, 2010, 10(1): 41-45.
WuX L, XiongZ Y, JiZ L. Separation performance of multi-tube cyclone separator for natural gas purification[J]. Chinese Journal of Process Engineering, 2010, 10(1): 41-45.
15 卢春喜, 蔡智, 时铭显. 催化裂化提升管出口旋流快分-VQS系统的实验研究与工业应用[J]. 石油学报, 2004, 20(3): 24-29.
LuC X, CaiZ, ShiM X. Experimental study and industrial application of cyclone fast-fracture-VQS system for catalytic cracking riser tube[J]. Acta Petrolei Sinica, 2004, 20(3): 24-29.
16 孙凤侠. 旋流快分系统的流场分析与数值模拟[D]. 北京: 中国石油大学, 2004.
SunF X. Flow field analysis and numerical simulation of swirling fast separation system [D]. Beijing: China University of Petroleum, 2004.
17 孙凤侠, 卢春喜, 时铭显. 旋流快分器内气相流场的实验与数值模拟研究[J]. 石油大学学报(自然科学版), 2005, 29(3): 106-111.
SunF X, LuC X, ShiM X. Experimental and numerical simulation of gas flow field in a swirl fastener[J]. Journal of the University of Petroleum , China, 2005, 29(3): 106-111.
18 胡艳华, 王洋, 卢春喜. 催化裂化提升管出口旋流快分系统内隔流筒结构的优化改进[J]. 石油学报(石油加工), 2008, 24(2): 177-183.
HuY H, WangY, LuC X. Optimization and improvement of the structure of the separator in the catalytic cracking riser exit swirl rapid separation system[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2008, 24(2): 177-183.
19 卢春喜, 魏耀东, 时铭显. 提升管气固旋流组合快分设备: 02159407.4[P]. 2005-11-23
LuC X, WeiY D, ShiM X. Lifting pipe gas-solid swirling combined quick-distribution equipment: 02159407.4[P]. 2005-11-23.
20 金向红, 金有海, 王建军. 气液旋流器的分离性能[J]. 中国石油大学学报(自然科学版), 2009, 33(5): 124-129.
JinX H, JinY H, WangJ J. Separation performance of gas-liquid cyclone[J]. Journal of China University of Petroleum (Natural Science Edition), 2009, 33(5): 124-129.
21 HoffmannA C. Gas cyclones and swirl tubes: principles, design, and operation[J]. Applied Mechanics Reviews, 2007, 56(2): B28.
22 高思鸿, 张丹丹, 范怡平, 等. 气体干法净化旋流吸附耦合设备压降特性[J]. 化工学报, 2018, 69(5) : 1873-1883.
GaoS H, ZhangD D, FanY P, et al. Pressure drop characteristics of dry gas purification process in a coupled apparatus of cyclone and granular bed filter/adsorber[J]. CIESC Journal, 2018, 69(5): 1873-1883.
23 周双珍, 卢春喜, 时铭显. 不同结构气固旋流快分的流场研究[J]. 炼油技术与工程, 2004, 34(3): 12-17.
ZhouS Z, LuC X, ShiM X. Study on flow field of gas-solid swirl in different structures[J]. Oil Refining Technology and Engineering, 2004, 34(3): 12-17.
24 黄世平, 鄂承林, 王婷, 等. 环流预汽提组合旋流快分系统分离性能的实验研究[J]. 过程工程学报, 2016, 16(1): 41-47.
HuangS P, E C L, WangT, et al. Experimental study on separation performance of cyclone pre-stripping combined cyclone fast separation system[J]. Chinese Journal of Process Engineering, 2016, 16(1): 41-47.
25 黄世平. 带有环流预汽提的旋流快分系统流动特性的实验研究[D]. 北京: 中国石油大学, 2016.
HuangS P. Experimental study on flow characteristics of cyclone fast-distribution system with circulating pre-stripping [D]. Beijing: China University of Petroleum, 2016.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[3] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[4] 黄明, 康俊阳, 吴昕哲, 石宪章, 刘永志, 曹伟, 刘春太. 注塑成型光学制品折射率分层模拟与实验研究[J]. 化工学报, 2019, 70(7): 2503-2511.
[5] 周云龙, 常赫, 刘起超. 非线性振动下水平通道气液两相流动[J]. 化工学报, 2019, 70(7): 2512-2519.
[6] 乔俊飞, 贺增增, 杜胜利. 基于混合评价指标的自组织模糊神经网络设计研究[J]. 化工学报, 2019, 70(7): 2606-2615.
[7] 张友亮, 程香平, 韦江, 康林萍, 付远. 微椭圆孔轴面织构油封密封性能仿真模拟及机理探究[J]. 化工学报, 2019, 70(7): 2660-2667.
[8] 张黎, 王新宇, 李征, 谷俊峰, 阮诗伦, 申长雨. 熔融沉积3D打印材料粘接强度及模量预测研究[J]. 化工学报, 2019, 70(7): 2727-2736.
[9] 邱琳祯, 谷波, 缪梦华. R32热力学性质计算模型及其分析[J]. 化工学报, 2019, 70(6): 2075-2082.
[10] 羊城, 王可心, 邵之江, 黄晓津. HTR-PM大范围变负荷的MA自适应优化算法[J]. 化工学报, 2019, 70(6): 2211-2220.
[11] 赵柏岑, 丁静, 魏小兰, 刘彬, 陆建峰, 王维龙. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091.
[12] 赵延兴, 王宪, 姚晓宇, 董学强, 沈俊, 公茂琼. 流体汽液相平衡混合规则研究进展[J]. 化工学报, 2019, 70(6): 2036-2050.
[13] 杨海涛, 郑志坚, 朱家骅, 陈倬, 杨晨鹏, 段旬. 气液交叉流阵列PM2.5热泳和扩散泳拟传质模型[J]. 化工学报, 2019, 70(6): 2139-2146.
[14] 曲江源, 齐娜娜, 关彦军, 滕阳, 徐文青, 朱廷钰, 张锴. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
[15] 郑传杰, 盛昌栋. 高温烟气中吸附剂捕集K的模型及其反应动力学研究[J]. 化工学报, 2019, 70(6): 2259-2268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[2] 范燕平, 王庆印, 杨先贵, 姚洁, 王公应. Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO[J]. , 2009, 17(5): 883 -886 .
[3] 李进龙, 何清, 何昌春, 彭昌军, 刘洪来. Representation of Phase Behavior of Ionic Liquids Using the Equation of State for Square-well Chain Fluids with Variable Range[J]. , 2009, 17(6): 983 -989 .
[4] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[5] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[6] 刘公平, 侯丹, 卫旺, 相里粉娟, 金万勤. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane[J]. , 2011, 19(1): 40 -44 .
[7] 罗明良, 温庆志, 刘佳林, 刘洪见, 贾自龙. Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism[J]. , 2011, 19(1): 45 -51 .
[8] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .
[9] 沈剑, 何潮洪. Isolation and Purification of Triptolide from the Leaves of Tripterygium wilfordii Hook F[J]. , 2010, 18(5): 750 -754 .
[10] 郭秀娟, 王树荣, 王琦, 郭祚刚, 骆仲泱. Properties of Bio-oil from Fast Pyrolysis of Rice Husk[J]. , 2011, 19(1): 116 -121 .