化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3377-3384.doi: 10.11949/0438-1157.20190209

• 流体力学与传递现象 • 上一篇    下一篇

两种波纹深度板片传热及阻力特性的对比实验研究

李安军1,2(),陈晓庆1,2,李健1,2,黄超1,2,周振1,2,卢奇1,2   

  1. 1. 上海蓝滨石化设备有限责任公司,上海 201518
    2. 甘肃蓝科石化高新装备股份有限公司,甘肃 兰州 730070
  • 收稿日期:2019-03-07 修回日期:2019-05-20 出版日期:2019-09-05 发布日期:2019-06-24
  • 通讯作者: 李安军 E-mail:leelaj@stu.xjtu.edu.com
  • 作者简介:李安军(1979—),男,硕士,高级工程师,leelaj@stu.xjtu.edu.com
  • 基金资助:
    甘肃省科技计划项目(18YF1GA005);上海市科学技术委员会科研计划项目(16DZ0503400)

Experimental study on heat transfer and resistance characteristics of two corrugated depth plates

Anjun LI1,2(),Xiaoqing CHEN1,2,Jian LI1,2,Chao HUANG1,2,Zhen ZHOU1,2,Qi LU1,2   

  1. 1. Shanghai Lanbin Petrochemical Equipment Co. , Ltd. , Shanghai 201518, China
    2. Lanpec Technologies Limited, Lanzhou 730070, Gansu, China
  • Received:2019-03-07 Revised:2019-05-20 Online:2019-09-05 Published:2019-06-24
  • Contact: Anjun LI E-mail:leelaj@stu.xjtu.edu.com

摘要:

通过实验的方式和对比的方法对两种不同波纹深度板片组成的可拆板式换热器的传热及阻力特性进行研究,每种深度板片组成的板式换热器采用硬板63°/63°、软板29°/29°和混合板63°/29°三种波纹角度组合,此实验采用水/水换热,设置了两种工况,一种是冷热两侧等流速,另一种是固定热侧流速,计算两种工况下传热系数和压降的数值,描绘出对应的曲线。实验证明相同波纹夹角板片组合,该浅密波纹板片的传热系数均高于普通波纹板片,平均高于140 W/(m2·K),即传热系数平均提高1.9%,在混合板中两者传热系数的差别在300 W/(m2·K)以上,提高达4.8%,阻力的变化趋势与传热系数相同。推导出每组设备适用于一定Reynolds数范围的Nusselt数方程和摩擦系数方程,与已有研究成果对比分析,证明了该实验的正确性,同时也揭示这两种波纹板片的传热和阻力性能有优化的余地,为进一步的研究指明了方向。该实验也表明,除深度外的几何尺寸和结构均相同的两种波纹板片,虽然外形接近,但对应的Nusselt数和摩擦系数关系式却不相同,而且差别很大。

关键词: 板式换热器, 波纹板片, 传热, 流动

Abstract:

The heat transfer and resistance characteristics of the detachable plate heat exchanger composed of two different corrugated depth plates were studied by experimental method and comparative method. Each kinds of corrugated depth plates were divided into three corrugated angle combination of the hard plate (63°/63°), or soft plate (29°/29°), or mixed plate (63°/29°). The test was divided into two working conditions, one was that flow velocity of hot side synchronize with cold side, both sides were equal in every moment; The other was that flow velocity of hot side was always 0.5 m/s, flow rate of cold side was increased from 0.2 m/s to 0.9 m/s. The medium of each side was water. The value of the total heat transfer coefficient and pressure drop of two conditions were calculated, and the corresponding curves were described. The experiment proved that the total heat transfer coefficient of the shallow density corrugated plate was higher than that of the ordinary corrugated plate at the same corrugated angle combination, the average value was higher than 140 W/(m2·K), so the heat transfer coefficient was increased by 1.9% on average, and the difference of the heat transfer coefficients in the mixed plates was above 300 W/(m2·K), which was up to 4.8%, and the change trend of flow resistance was the same as the heat transfer coefficient. The functions of Nusselt number and friction factor were obtained, the correctness of the experiment was proved by comparing with the existed research results, it also revealed that there was room for optimization of the heat transfer performance and resistance of the two kinds of corrugated plates, which pointed out the direction for further research. The experiment also shown that the difference of the functions of Nusselt and friction coefficient about two kinds of corrugated plates with the same geometry size except the depth and the same structure were obvious.

Key words: gasketed plate heat exchanger, corrugated plates, heat transfer, flow

中图分类号: 

  • TK 124

图1

实验系统"

图2

波纹结构"

表1

被测试设备参数"

名称 设备参数
A B C A′ B′ C′
β 63°/63° 63°/29° 29°/29° 63°/29° 63°/29° 29°/29°
N/片 13(H) 7(H)+6(L) 13(L) 13(H) 7(H)+6(L) 13(L)
Y/mm 2.48 2.48 2.48 3.46 3.46 3.46
X/mm 8 8 8 12 12 12
l/mm 1480 1480 1480 1480 1480 1480
w/mm 340 340 340 340 340 340
?/mm 196 196 196 196 196 196
L W/mm 536 536 536 536 536 536
ψ 1.21 1.21 1.21 1.21 1.21 1.21
D h/mm 4.08 4.08 4.08 5.69 5.69 5.69

图3

两侧等流速时流速与传热系数的关系曲线"

图4

热测v=0.5 m/s时的传热系数与冷测流速的关系曲线"

图5

两侧等流速时压降Δp与流速v之间的关系"

图6

热测为v=0.5 m/s时压降Δp与流速v的关系"

表3

Nusselt数和摩擦系数方程式"

项目 波纹夹角 Nu f Re范围
PHE A 63°/63° Nu A=0.3095Re 0.7241 Pr 0.4 f A=1.133 Re -0.1186 1200<Re<6000
PHE B 63°/29° Nu B=0.3331Re 0.6907 Pr 0.4 f B=2.091 Re -0.2804 1200<Re<6000
PHE C 29°/29° Nu C=0.209Re 0.702 Pr 0.4 f C=1.356 Re -0.3374 1200<Re<6000
PHE A′ 63°/63° Nu A′=0.2478Re 0.7439 Pr 0.4 f A′=0.776 Re -0.0832 1800<Re<9000
PHE B′ 63°/29° Nu B′=0.272Re 0.705 Pr 0.4 f B′=0.5876 Re -0.1829 1800<Re<9000
PHE C′ 29°/29° Nu C′=0.1768Re 0.7163 Pr 0.4 f C′=1.056 Re -0.3273 1800<Re<9000

图7

Nusselt数方程与已有文献的比较"

图8

摩擦系数方程与已有文献的比较"

1 林宗虎, 汪军, 李瑞阳, 等 . 强化传热技术[M]. 北京: 化学工业出版社, 2007: 5-18.
Lin Z H , Wang J , Li R Y , et al . Enhanced Heat Transfer Technology[M]. Beijing: Chemical Industry Press, 2007: 5-18.
2 张冠敏 . 复合波纹板式换热器强化传热机理及传热特性研究[D]. 济南: 山东大学, 2006.
Zhang G M . Study on the heat transfer enhancement mechanism and heat transfer characteristics of composite corrugated plate heat exchanger[D]. Jinan: Shandong University, 2006.
3 杨崇麟 . 板式换热器工程设计手册[M]. 北京: 机械工业出版社, 1995: 19-26.
Yang C L . Engineering Design Manual of Plate Heat Exchanger[M]. Beijing: China Machine Press, 1995: 19-26.
4 Grijspeerdt K , Hazarika B , Vucinic D . Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for milk processing[J]. Journal of Food Engineering, 2003, 57: 237-242.
5 Lozano A , Barreras F , Fueyo N , et al . The flow in an oil/water plate heat exchanger for the automotive industry[J]. Applied Thermal Engineering, 2008, 28(10): 1109-1117.
6 Tiwari A K , Ghosh P , Sarkar J , et al . Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids[J]. International Journal of Thermal Sciences, 2014, 85: 93-103.
7 Gherasim I , Galanis N , Nguyen C T . Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger [J]. Applied Thermal Engineering, 2011, 31(17/18): 4113-4124.
8 Hur N , Lee M , Kang B H , et al . Numerical analysis of heat transfer in a plate heat exchanger[J]. Progress in Computational Fluid Dynamics, 2008, 8(7/8): 406-412.
9 Focke W W , Zachariades J , Olivier I . The effect of the corrugation angle on the thermohydraulic performance of plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1471.
10 Muley A , Manglik P M . Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates[J]. Journal of Heat Transfer, 1999, 121(1): 110-117.
11 Forooghi P , Hooman K . Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2014, 74: 448-459.
12 Khan T S , Khan M S , Chyu M C , et al . Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger[J]. International Journal of Refrigeration, 2012, 35: 336-348.
13 Tovazhnyanski L L , Kapustenko P A , Tsibulnik V A . Heat transfer and hydraulic resistance in channels of plate heat exchangers[J]. Energetica, 1980, 9: 123-125.
14 Dovic D , Palm B , Svaic S . Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4553-4563.
15 Gut A W , Pinto J M . Optimal configuration design for plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 2004, 47(22): 4833-4848.
16 Arsenyeva O , Kapustenko P , Tovazhnyanskyy L , et al . The influence of plate corrugations geometry on plate heat exchanger performance in specified process conditions[J]. Energy, 2013, 57: 201-207.
17 阴极翔, 李国君, 丰镇平 . 波纹通道板间距对通道内流动与换热影响的数值研究[J]. 热科学与技术, 2005, 4: 123-129.
Yin J X , Li G J , Feng Z P . Numerical investigation of effects of plate spacing on flow and heat transfer in channels[J]. Journal of Thermal Science and Technology, 2005, 4: 123-129.
18 许国治, 王韻茵, 安元良, 等 . 流体在板式换热器人字形波纹通道内的动力特性[J]. 石油化工设备, 1985, 14(4): 1-10.
Xu G Z , Wang Y Y , An Y L . Dynamic characteristics of the fluid in the serrated channels of the plate heat exchanger[J]. Journal of Petrochemical Equipment, 1985, 14(4): 1-10.
19 赵镇南 . 板式换热器人字波纹倾角对阻力及传热性能的影响[J]. 石油化工设备, 2001, 30: 1-3.
Zhao Z N . Effects of the corrugated inclination angle on heat transfer and resistance performances of plate heat exchangers[J]. Journal of Petrochemical Equipment, 2001, 30: 1-3.
20 周明连 . 板式热交换器流动分布的理论分析与实验研究[J]. 北方交通大学学报, 2001, 25(1): 67-71.
Zhou M L . Experimental and theoretical study on the flow distribution of plate heat exchanger[J]. Journal of Northern Jiaotong University, 2001, 25(1): 67-71.
21 叶莉 . 一种板式换热器板片的性能优化及理论分析[D]. 南京: 南京航空航天大学, 2012.
Ye L . The performance optimization and theoretical analysis of a plate of heat exchanger [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
22 黄莉 . 板式换热器波纹参数优化的数值模拟实验研究[D]. 北京: 北京化工大学, 2010.
Huang L . Numerical simulation study on parameter optimization of corrugated plate heat exchanger[D]. Beijing: Beijing University of Chemical Technology, 2010.
23 Bobbili P R , Sundén B , Das S K . An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers[J]. Applied Thermal Engineering, 2006, 26(16): 1919-1926.
24 Moffat R J . Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17.
25 杨士铭, 陶文铨 . 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 1-10.
Yang S M , Tao W Q . Heat Transmission [M]. 4th ed. Beijing: Higher Education Press, 2006: 1-10.
26 大连理工大学 . 化工原理(上册)[M]. 北京: 高等教育出版社, 2002: 254-257.
Dalian University of Technology . Principles of Chemical Engineering(First of Two Volumes)[M]. Beijing: Higher Education Press, 2002: 254-257.
27 Chisholm D , Wanniarachchi A S . Maldistribution in single pass mixed channel plate heat exchanger[C]//Shah R K. Compact Heat Exchangers for Power and Process Industries. New York: HTD-ASME, 1992: 95-99.
28 Gulenoglu C , Akturk F , Aradag S , et al . Experimental comparison of performances of three different plates for gasketed plate heat exchangers[J]. International Journal of Thermal Sciences, 2014, 75: 249-256.
29 Okada K , Ono M , Tomimura T , et al . Design and heat transfer characteristics of a new plate heat exchanger[J]. Heat Transfer Japanese Research, 1972, 1: 90-95.
30 Talik A C , Fletcher L S , Anand N K , et al . Heat transfer and pressure drop characteristics of a plate heat exchanger[C] // Fletcher L S , Toshio A . Proceedings of the ASME/JSME Thermal Engineering Conference. New York: ASME, 1995: 312-329.
[1] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[2] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[3] 杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
[4] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[5] 白炳林, 杨晓宏, 田瑞, 史盼敬, 李达. 太阳能光热-光电中空纤维真空膜蒸馏系统理论与实验研究[J]. 化工学报, 2019, 70(9): 3517-3526.
[6] 赵加佩, 周昊, 周明煕, 王甫, 袁金良. 铁矿石烧结中混合料特性对火焰烽面与烧结性能的影响机理研究[J]. 化工学报, 2019, 70(8): 3177-3187.
[7] 程永刚, 刘姣, 韩振南, 石磊, 许光文. 输送床甲烷化催化剂颗粒的热质传递行为与反应机制[J]. 化工学报, 2019, 70(8): 2876-2887.
[8] 李雅侠, 王霞, 张静, 张春梅, 龚斌, 吴剑华. 射流式涡发生器强化矩形螺旋通道内流体换热机理[J]. 化工学报, 2019, 70(8): 2961-2970.
[9] 赵晨晨, 郝庆兰, 闫宁娜, 杨德宇, 黄亚飞, 豆宝娟. Cu-Ce-Zr基催化剂上甲苯自持燃烧贫燃极限研究[J]. 化工学报, 2019, 70(8): 3050-3057.
[10] 梁梓宇, 万李, 李娟, 周熙宏, 杨冬. 并联双通道内超临界水的脉动传热特性[J]. 化工学报, 2019, 70(7): 2488-2495.
[11] 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471.
[12] 张明振, 黄冬梅, 胡毅伟, 原琪, 席合一, 沈利铭, 段鹏征. 点火位置对乳胶泡沫水平火蔓延规律的影响[J]. 化工学报, 2019, 70(7): 2802-2810.
[13] 高泽世, 姚元鹏, 吴慧英. 球形容器内石蜡非约束融化特性实验[J]. 化工学报, 2019, 70(7): 2480-2487.
[14] 张朔, 王维, 李强强, 唐宇佳, 董铁有. 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138.
[15] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁军, 钱积新. 多变量统计过程监控:进展及其在化学工业的应用[J]. CIESC Journal, 2003, 11(2): 191 -203 .
[2] Marzieh Amanabadi, Hossein Bahmanyar, Zohreh Zarkeshan, Mohamad Ali Mousavian. Prediction of Effective Diffusion Coefficient in Rotating Disc Columns and Application in Design[J]. CIESC Journal, 2009, 17(3): 366 -372 .
[3] 周冉, 李淑芬, 张大成. Combination of Supercritical Fluid Extraction with Ultrasonic Extraction for Obtaining Sex Hormones and IGF-1 from Antler Velvet[J]. CIESC Journal, 2009, 17(3): 373 -380 .
[4] 陈江波, 刘春江, 袁希钢, 余国琮. CFD Simulation of Flow and Mass Transfer in Structured Packing Distillation Columns[J]. CIESC Journal, 2009, 17(3): 381 -388 .
[5] 李沃源, 毋伟, 邹海魁, 初广文, 邵磊, 陈建峰. Process Intensification of VOC Removal from High Viscous Media by Rotating Packed Bed[J]. CIESC Journal, 2009, 17(3): 389 -393 .
[6] 章日光, 王宝俊, 田亚峻, 凌丽霞. Quantum Chemistry Studies on the Free-radical Growth Mechanism of Polycyclic Arenes from Benzene Precursors[J]. CIESC Journal, 2009, 17(3): 394 -400 .
[7] 梁英华, 郭红霞, 陈红萍, 吕敬德, 张波波. Effect of Doping Cerium in the Support of Catalyst Pd-Co/Cu-Co-Mn Mixed Oxides on the Oxidative Carbonylation of Phenol[J]. CIESC Journal, 2009, 17(3): 401 -406 .
[8] 胡永琪, 王建英, 赵瑞红, 刘玉敏, 刘润静, 李永丹. Catalytic Oxidation of Cyclohexane over ZSM-5 Catalyst in N-alkyl-N-methylimidazolium Ionic Liquids[J]. CIESC Journal, 2009, 17(3): 407 -411 .
[9] 沈佳妮, 赵玉潮, 陈光文, 袁权. Investigation of Nitration Processes of iso-Octanol with Mixed Acid in a Microreactor[J]. CIESC Journal, 2009, 17(3): 412 -418 .
[10] 杨艳, 张伟刚. Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2[J]. CIESC Journal, 2009, 17(3): 419 -426 .