化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2411-2425.doi: 10.11949/0438-1157.20190011

• 综述与专论 • 上一篇    下一篇

微生物电解池产甲烷技术研究进展

毛政中(),孙怡,黄志鹏,李超超,黄浩斌,成少安()   

  1. 浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027
  • 收稿日期:2019-01-04 修回日期:2019-04-03 出版日期:2019-07-05 发布日期:2019-07-22
  • 通讯作者: 成少安 E-mail:11627025@zju.edu.cn;shaoancheng@zju.edu.cn
  • 作者简介:毛政中(1994—),男,博士研究生,<email>11627025@zju.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2016YFB0600505)

Progress of research on methanogenic microbial electrolysis cell

Zhengzhong MAO(),Yi SUN,Zhipeng HUANG,Chaochao LI,Haobin HUANG,Shao an CHENG()   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2019-01-04 Revised:2019-04-03 Online:2019-07-05 Published:2019-07-22
  • Contact: Shao an CHENG E-mail:11627025@zju.edu.cn;shaoancheng@zju.edu.cn

摘要:

微生物电解池(microbial electrolysis cell,MEC)产甲烷技术是以微生物为催化剂,利用外界输入的电能将CO2或有机污染物转化为甲烷的新技术。MEC在实现CO2处置与能量转化的同时,能够处理污水、污泥、沼渣等多种污染物并生产甲烷,具有能量转化率高、生产成本低、环境友好等特点,可望成为解决能源紧缺和环境破坏问题的重要途径之一。近年来,MEC在产甲烷生物阴极结构及电子传递途径、产甲烷微生物群落等方面得到了广泛关注,同时,MEC耦合厌氧消化或其他废水处理系统形成的产甲烷新技术也逐渐研发并成为研究热点。本文综述了产甲烷生物阴极、产甲烷微生物群落等方面的研究现状,介绍了MEC耦合厌氧消化或其他系统产甲烷新技术,总结并分析了MEC产甲烷技术的研究方向和实用化过程仍需解决的技术难题。

关键词: 微生物电解池, 二氧化碳, 甲烷, 厌氧消化, 废水

Abstract:

Methanogenic microbial electrolysis cell (MEC) is a new technology that uses microorganisms as catalysts to convert CO2 or organic pollutants into methane by using external input electrical energy. MEC can treat a variety of pollutants such as sewage, sludge, biogas residue and produce methane while realizing CO2 treatment and energy conversion. It is considered as one of the important solutions with high energy conversion efficiency, low cost and environment-friendly for energy shortages and environmental pollution problems. In recent years, MEC has received extensive attention in methanogenic biocathode structure, electron transport pathways, and methanogenic microbial communities. At the same time, new methanogenic technologies formed by MEC coupled anaerobic digestion or other wastewater treatment systems have been gradually developed and become researche hotspot. In this paper, the progress of research on methanogenic biocathode and the methanogenic microbial community of methanogenic MEC were reviewed. Furthermore, the new systems of the MEC coupled anaerobic digestion or other systems for methane production were also introduced. Finally, the research direction of methanogenic MEC and the technical problems that still need to be solved in the practical process were summarized and analyzed.

Key words: microbial electrolysis cell, carbon dioxide, methane, anaerobic digestion, waste water

中图分类号: 

  • X 511

图1

MEC产甲烷技术示意图"

图2

产甲烷MEC新型电极结构示例"

图3

产甲烷生物阴极电子传递途径和产甲烷性能总结[6,33]"

图4

产甲烷菌代谢途径总结[9,38,39]"

表1

产甲烷MEC系统中古细菌组成"

Exp.

Num.

TypeVoltage/VInoculum/substratevCH4(v)/(L·L-1·d-1LocationDominant archaea genusRef.
(1)DC(20ml each)0.7ADS/acetate-anodeMethanobacterium (65%)[10]
(2)DC(20ml each)0.7ADS/propionate-anodeMethanobacterium(57%)[10]
(3)SC0.6raw waste sludge0.083anodeMethanocorpusculum(93%)[13]
(4)SC0.6alkali pretreatment of the waste sludge0.1anodeMethanocorpusculum(85%)[13]
(5)SC(15 L)0.3food waste leachate0.34 L·g-1TCODremovedbulk sludgeMethanosarcina(45%)[53]
(6)SC(20 L)0.3AD sludge FWTP(0.34 ± 0.02) L·g-1TCODremovedbulk sludgeMethanosarcina(24%), Methanobacterium(19%)[54]
(7)SC(0.8m34FTWW/ADS from winery WWTP1.16 ± 0.06matured sludgeMethanomassillicoccus(22%), Methanosphaerula(14%)[15]
(8)SC(0.8m3)(anaerobic effluent recycling of 200%)4FTWW /ADS from winery WWTP2.01±0.13matured sludgeMethanothrix(37.33%), Methanosphaerula(11.17%)[15]
(9)

SC

(Φ80×120 mm)

0.6waste activated sludge2.26±0.16suspended sludgeMethanosaeta(74%)[55]
(10)

DC

(300 ml each bottle)

-0.8CO25 L·m-2·d-1cathodeMethanobacterium(86.7%)[1]
(11)DC(800ml cathode working volume)continuous mode-0.7AGS/ethanol and organic acidscathodeMethanobacterium(77%)[56]
(12)DC(800ml cathode working volume)batch mode-0.7AGS/ethanol and organic acidscathodeMethanobacterium(84%)[56]
(13)SC0.6raw waste sludge0.083cathodeMethanocorpusculum(77%)[13]
(14)SC0.6alkali pretreatment of the waste sludge0.1cathodeMethanobacterium(98%)[13]
(15)SC(open circuit)0raw waste sludge0.064cathodeMethanosaeta(48.2%)[13]

图5

MEC产甲烷古菌属相对丰度统计"

图6

MEC细菌属相对丰度统计"

表2

MEC耦合其他系统产甲烷实验汇总"

Coupling systemEffective volume/LOLR/(g TCOD·L-1·d-1)HRT/dApplied voltage/V

Current density/

(A·m-2)

TCOD

removal/%

Other contaminants removal

indicators/%

Ce/%CCE/%

vCH4(v)/

(L·L-1·d-1)

Ref.

AD-MEC

DW treatment

30.08115095800.012[58]
AD-MEC0.52.02240.80.0501±0.002887.5±2.236.9±1.7(VSS)56.37±3.31>1000.073±0.001[65]
AD-MEC FWTP wastewater treatment203.0200.376.1±3.373.2±2.1%(TVS)(0.34±0.02) L·(g COD)-1[54]
AD-MEC SEOR wastewater treatment0.0220.21201.280 A·m-395.80.133±0.0045[61]
TP-AD-MEC(fermentate-digestate mixture, 55℃)

anode:0.86;

cathode:0.86

1.520anode: +0.2 V vs SHE

0.723±0.048

(830 cm2)

28±3119±28(particulate COD)51±10.111±0.010[12]
UAR-MEC0.61.5—210.8±0.018.6 mA83

97%(carbohydrate)

62%(protein)

83%(TOC)

15142.8 ml·(g COD)-1[23]
MEC-AnMBR?120005.88—7.85100.688.8

72.1%(TN)

87.4%(NH4+-N)

86.9%(BOD5)

0.123[75]

AD-MEC

(PS?treatment)

anode:0.5;

cathode:0.1

0.899anode:-0.03 V vs SHE270±461±9 (VSS)63[79]

ABR?-MFC-MEC

fecal wastewater treatment

ABR:28;MFC:9.6;

MEC:9.6

0.7548MFC output voltage:(452.5±10.5)mV95.995%(NH4+-N)biogas components: CH4:55%–65%[77]
PEC?-MEC

anode:0.08;

cathode:0.15

3galvanostatic electrolysis at 2.5 mA3.33(7.5 cm2)82±100.0391[80]
PEC-MECanode:0.45;cathode:0.450.275(40 cm2)96

(192.0 ± 3.6)

μl·d-1·cm-2

[81]
MEC-UASB?(pilot scale F-T? wastewater treatment)80030.23±1.07

MEC:0.11

UASB:1.67

4.093.5±1.62.01±0.13[15]

N-MEC?

(3 groups: M/C/N)

1

M:1.6

C/N:0.9

M:0.58

C/N:1

M:1.3

C/N:1

M:80.9±3

C/N:99

C: 65%±2.4%

N: 83%±3%

NH4+-N)

M: 0.451[74]
UT?-UASB-MECUASB-MEC:35; UT:100.92±0.0270.545 mA71.437.86%(VSS/SS)[82]

图7

近三年MEC耦合其他系统产甲烷示意图"

1 ChengS A, XingD F, CallD F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958.
2 AryalN, TremblayP, LizakD M, et al. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide[J]. Bioresource Technology, 2017, 233: 184-190.
3 BajracharyaS, YuliasniR, VanbroekhovenK, et al. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis[J]. Bioelectrochemistry, 2017, 113: 26-34.
4 SchlagerS, HaberbauerM, FuchsbauerA, et al. Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane[J]. Chemsuschem, 2017, 10(1SI): 226-233.
5 RabaeyK, RozendalR A. Microbial electrosynthesis - revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8(10): 706.
6 GeppertF, LiuD, van Eerten-JansenM, et al. Bioelectrochemical power-to-gas: state of the art and future perspectives[J]. Trends in Biotechnology, 2016, 34(11): 879-894.
7 VillanoM, ScardalaS, AulentaF, et al. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell[J]. Bioresource Technology, 2013, 130(1): 366.
8 LiF, LiY X, CaoY X, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis[J]. Nature Communications, 2018, 9(1): 3637.
9 ThauerR K, KasterA K, SeedorfH, et al. Methanogenic archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8): 579-591.
10 HariA R, VenkidusamyK, KaturiK P, et al. Temporal microbial community dynamics in microbial electrolysis cells - influence of acetate and propionate concentration[J]. Frontiers in Microbiology, 2017, 8: 1371.
11 SteinbuschK J J, HamelersH V M, SchaapJ D, et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures[J]. Environmental Science & Technology, 2010, 44(1): 513-517.
12 ZeppilliM, PavesiD, GottardoM, et al. Using effluents from two-phase anaerobic digestion to feed a methane-producing microbial electrolysis[J]. Chemical Engineering Journal, 2017, 328: 428-433.
13 LiuQ, RenZ J, HuangC, et al. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells[J]. Biotechnology for Biofuels, 2016, 9: 162.
14 CusickR D, KielyP D, LoganB E. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8855-8861.
15 WangD X, HanY X, HanH J, et al. Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study[J]. Bioresource Technology, 2017, 238: 333-342.
16 YuZ S, LengX Y, ZhaoS, et al. A review on the applications of microbial electrolysis cells in anaerobic digestion[J]. Bioresource Technology, 2018, 255: 340-348.
17 ZhenG Y, LuX Q, KumarG, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current, situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63: 119-145.
18 ZhenG Y, ZhengS J, LuX Q, et al. A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways[J]. Bioresource Technology, 2018, 266: 382-388.
19 FuQ, KuramochiY, FukushimaN, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232.
20 VillanoM, AulentaF, CiucciC, et al. Bioelectrochemical reduction of CO2 to CH4via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresource Technology, 2010, 101(9): 3085-3090.
21 van Eerten-JansenM, Ter HeijneA, BuismanC, et al. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6): 809-819.
22 van Eerten-JansenM, VeldhoenA B, PluggeC M, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system[J]. Archaea-An International Microbiological Journal, 2013, 2013: 481784.
23 SangeethaT, GuoZ, LiuW, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC)[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2189-2196.
24 LoganB, ChengS, WatsonV, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3341-3346.
25 ClauwaertP, VerstraeteW. Methanogenesis in membraneless microbial electrolysis cells[J]. Applied Microbiology and Biotechnology, 2009, 82(5): 829-836.
26 ZhenG Y, LuX Q, KobayashiT, et al. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284: 1146-1155.
27 JiaY, FengH, ShenD, et al. Enhanced production of methane from waste activated sludge by pretreatment using a gas-diffusion cathode[J]. Energy & Fuels, 2016, 30(12): 10511–10515.
28 ChengS A, YeY L, DingW J, et al. Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode[J]. Journal of Power Sources, 2014, 248: 931-938.
29 BajracharyaS, VanbroekhovenK, BuismanC J N, et al. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide[J]. Environmental Science and Pollution Research, 2016, 23(22): 22292-22308.
30 WangQ N, DongH, YuH B, et al. Enhanced electrochemical reduction of carbon dioxide to formic acid using a two-layer gas diffusion electrode in a microbial electrolysis cell[J]. RSC Advances, 2015, 5(14): 10346-10351.
31 AlqahtaniM F, KaturiK P, BajracharyaS, et al. Porous hollow fiber nickel electrodes for effective supply and reduction of carbon dioxide to methane through microbial electrosynthesis[J]. Advanced Functional Materials, 2018, 28(43): 1804860.
32 JourdinL, FreguiaS, DonoseB C, et al. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source[J]. Bioelectrochemistry, 2015, 102: 56-63.
33 van Eerten-JansenM, JansenN C, PluggeC M, et al. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures[J]. Journal of Chemical Technology and Biotechnology, 2015, 90(5): 963-970.
34 LienemannM, DeutzmannJ S, MiltonR D, et al. Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase supercomplex[J]. Bioresource Technology, 2018, 254: 278-283.
35 RotaruA E, ShresthaP M, LiuF, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2013, 7(1): 408-415.
36 AulentaF, CatapanoL, SnipL, et al. Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H2-producing capability of Desulfovibrio sp.[J]. Chemsuschem, 2012, 5(6SI): 1080-1085.
37 FischerF, LieskeR, WinzerK. Biological gas reactions Ⅱ concerning the formation of acetic acid in the biological conversion of carbon oxide and carbonic acid with hydrogen to methane[J]. Biochemische Zeitschrift, 1932, 245: 2-12.
38 DanielsL, SparlingR, SprottG D. The bioenergetics of methanogenesis[J]. Biochimica et Biophysica Acta, 1984, 768(2): 113-163.
39 FerryJ G. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass[J]. Current Opinion in Biotechnology, 2011, 22(3): 351-357.
40 WelteC, DeppenmeierU. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens[J]. Biochimica et Biophysica Acta-Bioenergetics, 2014, 1837(7SI): 1130-1147.
41 NevinK P, WoodardT L, FranksA E, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. MBIO, 2010, 1:e00103-102.
42 FaraghiparapariN, ZenglerK. Production of organics from CO2 by microbial electrosynthesis (MES) at high temperature[J]. Journal of Chemical Technology and Biotechnology, 2017, 92(2): 375-381.
43 JourdinL, FreguiaS, DonoseB C, et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis[J]. Journal of Materials Chemistry A, 2014, 2(32): 13093-13102.
44 JourdinL, GriegerT, MonettiJ, et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide[J]. Environmental Science & Technology, 2015, 49(22): 13566-13574.
45 ShenL, ZhaoQ C, WuX E, et al. Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors[J]. Renewable & Sustainable Energy Reviews, 2016, 54: 1358-1367.
46 RotaruA, ShresthaP M, LiuF, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605.
47 LiuF, RotaruA, ShresthaP M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989.
48 ChenS, RotaruA, LiuF, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86.
49 ChenS, RotaruA, ShresthaP M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4(1): 5019.
50 LovleyD R. Syntrophy goes electric: direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71: 643-664.
51 ParkJ H, KangH J, ParkK H, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311.
52 FengQ, SongY C, AhnY. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor[J]. Bioresource Technology, 2018, 259: 119-127.
53 LeeB, ParkJ G, ShinW B, et al. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells[J]. Bioresource Technology, 2017, 234: 273-280.
54 ParkJ, LeeB, TianD, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J]. Bioresource Technology, 2018, 247: 226-233.
55 ZhaoZ S, ZhangY B, QuanX, et al. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J]. Bioresource Technology, 2016, 200: 235-244.
56 XuH, WangK, HolmesD E. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading[J]. Bioresource Technology, 2014, 173: 392-398.
57 ZhaoZ, ZhangY, QuanX, et al. Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J]. Bioresource Technology, 2016, 200: 235-244.
58 MorenoR, San-MartinM I, EscapaA, et al. Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell[J]. Renewable Energy, 2016, 93: 442-448.
59 EscapaA, GilcarreraL, GarcíaV, et al. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater[J]. Bioresource Technology, 2012, 117(10): 55-62.
60 TencaA, CusickR D, SchievanoA, et al. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1859-1865.
61 YuN, XingD, LiW, et al. Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems[J]. International Journal of Hydrogen Energy, 2017, 42(1): 96-102.
62 KielyP D, CusickR, CallD F, et al. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters[J]. Bioresource Technology, 2011, 102(1): 388-394.
63 WagnerR C, ReganJ M, OhS E, et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells[J]. Water Research, 2009, 43(5): 1480-1488.
64 CerrilloM, VinasM, BonmatiA. Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane[J]. Renewable Energy, 2018, 120: 178-189.
65 ZhaoZ, ZhangY, YuQ, et al. Enhanced decomposition of waste activated sludge via anodic oxidation for methane production and bioenergy recovery[J]. International Biodeterioration & Biodegradation, 2016, 106: 161-169.
66 ZhenG Y, LuX Q, KobayashiT, et al. Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor[J]. Chemosphere, 2017, 180: 229-238.
67 DouZ, DykstraC M, PavlostathisS G. Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production[J]. Science of the Total Environment, 2018, 633: 1012-1021.
68 BeegleJ R, BoroleA P. Energy production from waste: evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors[J]. Renewable & Sustainable Energy Reviews, 2018, 96: 343-351.
69 FengQ, SongY C, BaeB U. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature[J]. Bioresource Technology, 2016, 220: 500-508.
70 PantD, SinghA, BogaertG V, et al. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects[J]. Renewable & Sustainable Energy Reviews, 2011, 15(2): 1305-1313.
71 EscapaA, SanmartínM I, MoránA. Potential use of microbial electrolysis cells in domestic wastewater treatment plants for energy recovery[J]. Frontiers in Energy Research, 2014, 2(51): 17519-17527.
72 ZhenG Y, LuX Q, KatoH, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2017, 69: 559-577.
73 WangL, AzizT N, RdD L R F. Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste[J]. Water Research, 2013, 47(11): 3835.
74 HussainA, LebrunF M, TartakovskyB. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell[J]. Enzyme and Microbial Technology, 2017, 102: 41-48.
75 蔡文忠,张希晨,周耀辉. MEC/AnMBR反应器组合处理生活污水[J]. 南华大学学报(自然科学版), 2017, (2): 107-112.
CaiW Z, ZhangX C, ZhouY H. MEC/AnMBR reactor combined treatment of domestic sewage[J]. Journal of Nanhua University(Natural Science), 2017, (2): 107-112.
76 JiangY, SuM, LiD. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system[J]. Applied Biochemistry and Biotechnology, 2014, 172(5): 2720-2731.
77 LiuH B, LengF, GuanY L, et al. Simultaneous pollutant removal and electricity generation in a combined ABR-MFC-MEC system treating fecal wastewater[J]. Water Air and Soil Pollution, 2017,228: 179.
78 HuangL, JiangL, WangQ, et al. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells[J]. Chemical Engineering Journal, 2014, 253: 281-290.
79 KiD, ParameswaranP, PopatS C, et al. Maximizing Coulombic recovery and solids reduction from primary sludge by controlling retention time and pH in a flat-plate microbial electrolysis cell[J]. Environmental Science-Water Research & Technology, 2017, 3(2): 333-339.
80 NicholsE M, GallagherJ J, LiuC, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466.
81 FuQ, XiaoS, LiZ, et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%[J]. Nano Energy, 2018, 53: 232-239.
82 LiX J, ZhuT, ZhangK, et al. Enhanced sludge degradation process using a microbial electrolysis cell in an up-flow anaerobic sludge blanket reactor with ultrasound treatment[J]. Chemical Engineering Journal, 2016, 306: 17-21.
83 BarberJ, TranP D. From natural to artificial photosynthesis[J]. Journal of the Royal Society Interface, 2013, 10(81): 20120984.
[1] 沈伟, 彭旭东, 江锦波, 李纪云. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
[2] 刘宏臣, 周峰, 尧超群, 陈光文. 微反应器内CO2解吸过程流动行为及气提强化[J]. 化工学报, 2019, 70(7): 2448-2455.
[3] 宋楠, 潘敏建, 陈炳旭, 钱刚, 段学志, 周兴贵. 费托催化剂η-Fe2C (011)上CH4形成及C-C耦合机理研究[J]. 化工学报, 2019, 70(7): 2540-2547.
[4] 唐元晖, 扈阳, 燕至琴, 李春玉. 高浓度含盐草甘膦溶液的纳滤分离实验研究[J]. 化工学报, 2019, 70(7): 2574-2583.
[5] 张婧然, 周璇, 王辉, 朱丹丹, 李先宁. 微生物燃料电池处理重金属废水的研究进展[J]. 化工学报, 2019, 70(6): 2027-2035.
[6] 朱珉, 陈时熠, 李蒙, 宋业恒, 张磊, 向文国. 化学链干重整联合制氢热力学分析及实验[J]. 化工学报, 2019, 70(6): 2244-2251.
[7] 张鹏, 王雨露, 丁文杰, 赵文麟. 新型巯基絮凝剂PAM-GSH的合成及除Mn(Ⅱ)性能研究[J]. 化工学报, 2019, 70(5): 1932-1941.
[8] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[9] 马双忱, 范紫瑄, 万忠诚, 陈嘉宁, 张净瑞, 马采妮. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964-1972.
[10] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[11] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[12] 赵汝斌, 蔡猛, 庞煜霞. 碱溶透析和酸析处理对碱木质素物化性质和Pb2+去除性能的影响[J]. 化工学报, 2019, 70(5): 1894-1903.
[13] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[14] 张兰河, 张明爽, 郭静波, 贾艳萍, 李正, 陈子成. Fe3+在A2O工艺缺氧区的转化规律及其对污泥絮凝性的影响[J]. 化工学报, 2019, 70(3): 1089-1098.
[15] 周雪冰, 刘婵娟, 罗金琼, 梁德青. 甲烷水合物分解过程的微尺度测量[J]. 化工学报, 2019, 70(3): 1042-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薄翠梅, 乔旭, 张广明, 张湜, 杨海荣. 基于ICA-SVM的复杂化工过程集成故障诊断方法 [J]. 化工学报, 2009, 60(9): 2259 -2264 .
[2] 尹春华, 刘江帆, 高明. 维生素E琥珀酸酯的酶促合成及优化 [J]. 化工学报, 2010, 61(4): 935 -941 .
[3] 张丹丹, 徐舜华, 刘智勇. 采用单一重组分代替复杂馏分模拟酮苯脱蜡溶剂回收过程 [J]. 化工学报, 2011, 62(2): 477 -481 .
[4] 李盘生. 工业区大气中低浓度二氧化硫在高湿度时光化学反应速率及其对视距影响 [J]. , 1957, 8(2): 130 -136 .
[5] 夏光祥. 褐煤自氨性溶液中吸附铜、镍、钴的物理化学研究 [J]. , 1985, 36(2): 196 -203 .
[6] . JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING(CHINA) Vol.45 1994 Annual Editorial Index [J]. , 1994, 45(6): 771 -776 .
[7] 刘旭辉, 黄汉雄. 工艺参数对水辅助熔体充模流动的影响 [J]. 化工学报, 2011, 62(2): 520 -524 .
[8] 侯朝鹏,夏国富,李明丰,聂红,李大东. F-T合成催化剂H2S中毒热力学和抗硫可行性预测 [J]. , 2011, 62(3): 598 -603 .
[9] 胡万里,周理,余国琮. 刚性换热网络的弹性化 [J]. , 1993, 44(1): 96 -102 .
[10] . 常减压蒸馏装置节能改造技术的开发、应用与推广 [J]. , 1986, 37(2): 258 .