化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2456-2471.doi: 10.11949/0438-1157.20181534

• 流体力学与传递现象 • 上一篇    下一篇

缠绕管式换热器壳程强化传热性能影响因素分析

高兴辉(),周帼彦(),涂善东   

  1. 华东理工大学机械与动力工程学院,承压系统与安全教育部重点实验室,上海 200237
  • 收稿日期:2019-01-02 修回日期:2019-04-12 出版日期:2019-07-05 发布日期:2019-07-22
  • 通讯作者: 周帼彦 E-mail:961277609@qq.com;zhougy@ecust.edu.cn
  • 作者简介:高兴辉(1993—),男,硕士研究生,<email>961277609@qq.com</email>

Study on effects of structural parameters on shell-side heat transfer enhancement in spiral wound heat exchangers

Xinghui GAO(),Guoyan ZHOU(),Shandong TU   

  1. Key Laboratory of Pressure Systems and Safety,Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2019-01-02 Revised:2019-04-12 Online:2019-07-05 Published:2019-07-22
  • Contact: Guoyan ZHOU E-mail:961277609@qq.com;zhougy@ecust.edu.cn

摘要:

由于内部流场信息缺乏,结构参数对流体流动的影响规律不明确,致使缠绕管式换热器壳程强化传热机理不明晰,阻碍其设计准则的进一步规范化和通用。针对上述问题,对缠绕管式换热器壳程流体流动进行几何建模及数值模拟,并通过文献中实验数据进行验证,进而基于该模型对壳程流体流场特性进行详细分析,分析关键结构参数对其壳程传热与阻力性能的影响,并探讨其强化传热机理。结果表明:Realizable k-ε湍流模型可较为准确地描述壳程流体流动;在双对数坐标系内,壳程Nusselt数随Reynolds数的增大而增大,阻力系数f则呈线性降低的趋势;壳程Nusselt数随缠绕管直径d与平均缠绕直径D的增大而增大,随螺距S的增大而减小,阻力系数f则相反;缠绕管直径d对壳程流体传热与阻力性能的影响最大,平均缠绕直径D的影响最小;增大缠绕管直径d与平均缠绕直径D有利于破坏流体速度边界层,增强流体扰动,加快温升速度,强化壳程传热,而增大螺距S则使速度边界层变厚,减小流动阻力的同时降低温升速度,不利于壳程强化传热。

关键词: 缠绕管式换热器, 数值模拟, 强化传热, 传热与阻力性能, 结构参数敏感性

Abstract:

Due to the lack of internal flow field information, the influence of structural parameters on fluid flow is not clear, which makes the heat transfer mechanism of the shell-tube heat exchanger shell side unclear and hinders the further standardization and generalization of its design criteria. Aiming at the above problems, geometry modeling and corresponding numerical simulations were carried out for the shell side flow of spiral wound heat exchangers. The feasibility and accuracy of these modellings were verified by comparing with experimental data in the literature. Then the flow field and characteristics of shell side fluid were investigated in detail. The heat transfer enhancement mechanism was further discussed based on the analysis of the influences of key structural parameters on the heat transfer and resistance performance. The results show that the fluid flow on the shell side can be described more accurately by using Realizable k-ε turbulence model. The Nusselt number increases linearly with the increase of the Reynolds number in a log-log coordinate system, while the friction factor f decreases linearly. The Nusselt number increases as the results of increased winding tube diameter d and average winding diameter D, and decreased pitch S. But it was opposite for the friction factor f. The heat transfer and resistance performance of the shell side are mostly affected by the winding tube diameter d, and the average winding diameter D does the least. Increased winding tube diameter d and average winding diameter D will break the boundary layer of the fluid flow. Then the fluid disturbance increases and hence the temperature increases faster. It is beneficial to enhance heat transfer on shell side. While increased pitch S will make the fluid flow much more smoothly, which causes velocity boundary layer to thicken. Thus flow resistance and temperature rising rate are reduced, it is not good for enhancement of heat transfer on shell side.

Key words: spiral wound heat exchanger, numerical simulation, heat transfer enhancement, heat transfer and resistance performance, structural parameters sensitivity

中图分类号: 

  • TK 172

图1

缠绕管式换热器壳程几何模型"

表1

缠绕管式换热器主要结构尺寸"

Structural parameterNumerical value/mm
shell length H400
shell diameter Ds150
central cylinder diameter Dc60
heat exchange height h270
winding tube diameter d6—15
pitch S10—20
average winding diameter D99—111

图2

网格划分"

图3

Nusselt数Nu和阻力系数f随网格数的变化情况"

表2

文献[30]缠绕管式换热器样机主要结构参数尺寸"

Structural parameterNumerical value
shell length/mm606
shell diameter/mm159
central cylinder diameter/mm68
winding tube diameter/mm12
winding angle/(°)20
inner winding diameter/mm92
outer winding diameter/mm126

图4

模拟值与实验值对比"

表3

误差分析"

ErrorOutput temperature To/℃Pressure drop ΔP/Pa
Standard k-εRNG k-εRealizable k-εStandard k-εRNG k-εRealizable k-ε
maximum error6.806.775.3117.9017.2017.05
minimum error5.504.934.370.720.260.86
average error6.305.965.128.528.408.29

图5

Nusselt数随Reynolds数的变化情况"

图6

阻力系数随Reynolds数的变化情况"

图7

流场分析选取位置"

图8

Nusselt数随缠绕管直径的变化情况"

图9

阻力系数随缠绕管直径的变化情况"

图10

不同直径下沿路径L1、L2、L3及截面的速度分布"

图11

不同直径下沿路径L1、L2、L3及截面的温度分布"

图12

不同直径下沿路径L1、L2、L3压降及截面的压力分布"

图13

Nusselt数随螺距的变化情况"

图14

阻力系数随螺距的变化情况"

图15

不同螺距下沿路径L1、L2、L3及截面的速度分布"

图16

不同螺距下沿路径L1、L2、L3及截面的温度分布"

图17

不同螺距下沿路径L1、L2、L3压降及截面上的压力分布"

图18

Nusselt数随平均缠绕直径的变化情况"

图19

阻力系数随平均缠绕直径的变化情况"

图20

不同平均缠绕直径下沿路径L1、L2、L3及截面的速度分布"

图21

不同平均缠绕直径下沿路径L1、L2、L3及截面的温度分布"

图22

不同平均缠绕直径下沿路径L1、L2、L3压降及截面的压力分布"

图23

Nusselt数和阻力系数对几何参数的敏感度"

1 丁超, 胡海涛, 丁国良, 等. 运行工况对 LNG 绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423.
DingC, HuH T, DingG L, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423.
2 ZengM, ZhangG P, LiY, et al. Geometrical parametric analysis of flow and heat transfer in the shell side of a spiral-wound heat exchanger[J]. Heat Transfer Engineering, 2015, 36(9): 790-805.
3 LuX, DuX P, ZengM, et al. Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions[J]. Applied Thermal Engineering, 2014, 70(2): 1216-1227.
4 LuX, ZhangG P, ChenY T, et al. Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 1104-1116.
5 于清野. 缠绕管式换热器计算方法研究[D]. 大连: 大连理工大学, 2011.
YuQ Y. Research on calculation method for helical wound coil tube heat exchangers[D]. Dalian: Dalian University of Technology, 2011.
6 薛佳幸. 缠绕管式换热器换热工艺研究[D]. 兰州: 兰州交通大学, 2015.
XueJ X. Research on heat transfer process of coil-wound heat exchangers[D]. Lanzhou: Lanzhou Jiaotong University, 2015.
7 ShukriT. LNG technology selection[J]. Hydrocarbon Engineering, 2004, 9(2): 71-76.
8 NeeraasB O. Condensation of hydrocarbon mixtures in coil wound LNG heat exchangers, tube-side heat transfer and pressure drop[D]. Trondheim: Norwegian Institute of Technology, 1993.
9 SalimpourM R. Heat transfer coefficients of shell and coiled tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2009, 33(2): 203-207.
10 GhorbaniN, TaherianH, GorjiM, et al. An experimental study of thermal performance of shell and coil heat exchangers[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 775-781.
11 季鹏, 李玉星, 王武昌, 等. 结构参数对绕管式换热器传热特性的影响[J]. 油气储运, 2015, 34(8): 886-891.
JiP, LiY X, WangW C, et al. Effect of structural parameter on heat transfer performance of coil-wound heat exchange[J]. Oil & Gas Storage and Transportation, 2015, 34(8): 886-891.
12 GenićS B, JaćimovićB M, JarićM S, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300.
13 吴志勇, 陈杰, 浦晖, 等. LNG绕管式换热器壳侧过热态流动的数值模拟[J]. 煤气与热力, 2014, 34(8): 6-11.
WuZ Y, ChenJ, PuH, et al. Numerical simulation of superheated flow on the shell side of LNG coiled heat exchanger[J]. Gas & Heat, 2014, 34(8): 6-11.
14 张周卫. 单股流螺旋缠绕管式换热器设计计算方法: 201210297815. 1[P]. 2012-09.
ZhangZ W. Design and calculation method of single-strand spiral-twisted tube heat exchanger: 201210297815.1[P]. 2012-09.
15 张周卫. 双股流螺旋缠绕管式换热器设计计算方法: 201210303321. X[P]. 2013-01.
ZhangZ W. Design and calculation method of double-strand spiral-twisted tube heat exchanger:201210303321.X[P]. 2013-01.
16 张周卫. 低温液氮用一级回热多股流换热装备: 201310387575. 9[P]. 2013-08.
ZhangZ W. One-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310387575.9[P]. 2013-08.
17 张周卫. 低温液氮用二级回热多股流换热装备: 201310361165. 7[P]. 2013-08.
ZhangZ W. Two-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310361165.7[P]. 2013-08.
18 张周卫. 低温液氮用三级回热多股流换热装备: 201310358118. 7[P]. 2013-08.
ZhangZ W. Three-stage heat recovery multi-stream heat exchanger for cryogenic liquid nitrogen: 201310358118.7[P]. 2013- 08.
19 WuJ, LiuS, WangM, et al. Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change[J]. Applied Thermal Engineering, 2018, 134: 360-368.
20 JamshidiN, FarhadiM, GanjiD D, et al. Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers[J]. Applied Thermal Engineering, 2013, 51(1/2): 644-652.
21 RenY, CaiW, ChenJ, et al. Numerical study on the shell-side flow and heat transfer of superheated vapor flow in spiral wound heat exchanger under rolling working conditions[J]. International Journal of Heat and Mass Transfer, 2018, 121: 691-702.
22 RenY, CaiW, JiangY, et al. Numerical study on shell-side flow and heat transfer of spiral-wound heat exchanger under sloshing working conditions[J]. Applied Thermal Engineering, 2018, 134: 287-297.
23 李剑锐, 陈杰, 浦晖, 等. 绕管式换热器壳侧降膜流动和相变传热的数值模拟[J]. 化工学报, 2015, 66(S2): 40-49.
LiJ R, ChenJ, PuH, et al. Simulation of falling film flow and heat transfer at shell-side of coil-wound heat exchanger[J]. CIESC Journal, 2015, 66(S2): 40-49.
24 PacioJ C, DoraoC A. A review on heat exchanger thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51(7): 366-379.
25 徐烨琨, 刘成, 李永辉. 折流杆换热器的研究方法进展[J]. 化工进展, 2014, 33(7): 1671-1676.
XuY K, LiuC, LiY H. Progress of rod baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1671-1676.
26 都跃良, 张贤安. 缠绕管式换热器的管理及其应用前景分析[J]. 化工机械, 2005, 32(3): 181-185.
DuY L, ZhangX A. The management and analysis on application prospect of coiled wound heat exchanger[J]. Chemical Engineering & Machinery, 2005, 32(3): 181-185.
27 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 42.
WangF J. Computational Fluid Dynamics Analysis—Principles and Applications of CFD Software[M]. Beijing: Tsinghua University Press, 2004: 42.
28 王定标, 夏春杰, 董永申. 凹凸版换热器强化传热的数值模拟[J]. 化工进展, 2014, 33(1): 106-112.
WangD B, XiaC J, DongY S. Performance study of honeycomb plate heat exchanger[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 106-112.
29 夏春杰, 王定标, 董永申, 等. 基于遗传算法的蜂窝板换热器多目标优化[J]. 高校化学工程学报, 2015, (5): 1201-1206.
XiaC J, WangD B, DongY S, et al. Multi-objective optimization of honeycomb plate heat transfer exchangers using a genetic algorithm method[J]. Journal of Chemical Engineering of Chinese Universities, 2015, (5): 1201-1206.
30 邓静. 螺旋缠绕管换热器流动传热性能研究[D]. 郑州:郑州大学, 2016.
DengJ. The heat transfer and flow characteristics analysis of helically coiled tube heat exchanger[D]. Zhengzhou: Zhengzhou University, 2016.
31 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004: 21.
GuoZ Y, HuangS Y. Filed Coordination Principle and New Techniques in Heat Transfer Enhancement[M]. Beijing: China Electric Power Press, 2004: 21.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 黄明, 康俊阳, 吴昕哲, 石宪章, 刘永志, 曹伟, 刘春太. 注塑成型光学制品折射率分层模拟与实验研究[J]. 化工学报, 2019, 70(7): 2503-2511.
[3] 张黎, 王新宇, 李征, 谷俊峰, 阮诗伦, 申长雨. 熔融沉积3D打印材料粘接强度及模量预测研究[J]. 化工学报, 2019, 70(7): 2727-2736.
[4] 张昊, 申凯, 赖艳华, 崔琳, 董勇. 氯化钙溶液喷雾闪蒸再生特性模拟及试验分析[J]. 化工学报, 2019, 70(6): 2269-2278.
[5] 郭月莹, 谢建良, 彭波. 可见高吸收红外高反射薄膜制备及光学特性研究[J]. 化工学报, 2019, 70(6): 2325-2333.
[6] 曲江源, 齐娜娜, 关彦军, 滕阳, 徐文青, 朱廷钰, 张锴. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
[7] 彭婷, 袁中原, 袁艳平, 曹晓玲. 圆筒形地下立体停车库火灾火源位置与火势蔓延规律研究[J]. 化工学报, 2019, 70(6): 2397-2408.
[8] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[9] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[10] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[11] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[12] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[13] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[14] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[15] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李盘生. 工业区大气中低浓度二氧化硫在高湿度时光化学反应速率及其对视距影响 [J]. , 1957, 8(2): 130 -136 .
[2] 李冬杰, 陆君, 王宇新. PEMFC用石墨/酚醛树脂复合板的膨胀石墨表面改性 [J]. 化工学报, 2008, 59(9): 2356 -2360 .
[3] 赵淑珍,卢元铎,靳金荣. 二氧化铅电极的研制——PbO_2/掺Sb-SnO_2/Ti阳极 [J]. , 1981, 32(2): 135 -140 .
[4] 雷夏,费维扬,沈忠耀,汪家鼎. 一种由稳态浓度剖面计算萃取柱中轴向混合系数和“真实”传质单元高度的方法 [J]. , 1982, 33(4): 368 -376 .
[5] 张煜, 王丽军, 李希. 湍动浆态床流体力学研究(Ⅱ)轴向浆料速度的径向分布 [J]. 化工学报, 2008, 59(12): 3003 -3009 .
[6] 薄翠梅, 乔旭, 张广明, 张湜, 杨海荣. 基于ICA-SVM的复杂化工过程集成故障诊断方法 [J]. 化工学报, 2009, 60(9): 2259 -2264 .
[7] 尹春华, 刘江帆, 高明. 维生素E琥珀酸酯的酶促合成及优化 [J]. 化工学报, 2010, 61(4): 935 -941 .
[8] 程桂石, 汪群慧, 齐虹, 孙晓红, 赵莹. pH值对电渗析法回收厨房垃圾发酵液中乳酸的影响 [J]. 化工学报, 2005, 56(11): 2200 -2203 .
[9] 张丹丹, 徐舜华, 刘智勇. 采用单一重组分代替复杂馏分模拟酮苯脱蜡溶剂回收过程 [J]. 化工学报, 2011, 62(2): 477 -481 .
[10] 张克武,张宇英. 气体不平衡状态理论方程的推广应用(Ⅶ)——液体定压比热容理论方程 [J]. , 1997, 48(4): 417 -423 .