化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2802-2810.doi: 10.11949/0438-1157.20181229

• 过程安全 • 上一篇    下一篇

点火位置对乳胶泡沫水平火蔓延规律的影响

张明振1,3(),黄冬梅1(),胡毅伟1,原琪1,席合一1,沈利铭2,段鹏征2   

  1. 1. 中国计量大学质量与安全工程学院,浙江 杭州 310018
    2. 喜临门家具股份有限公司,浙江 绍兴 312000
    3. 深圳市城市公共安全技术研究院消防安全研究所,广东 深圳 518046
  • 收稿日期:2018-10-19 修回日期:2019-04-09 出版日期:2019-07-05 发布日期:2019-07-22
  • 通讯作者: 黄冬梅 E-mail:2292453790@qq.com;dmhuang@cjlu.edu.cn
  • 作者简介:张明振(1992—),男,硕士研究生,<email>2292453790@qq.com</email>
  • 基金资助:
    浙江省自然科学基金项目(17E060004);浙江省重点研发项目(2018C01136)

Effect of ignition position on horizontal flame spread of latex foam

Mingzhen ZHANG1,3(),Dongmei HUANG1(),Yiwei HU1,Qi YUAN1,Heyi XI1,Liming SHEN2,Pengzheng DUAN2   

  1. 1. College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
    2. Xilinmen Furniture Co. Ltd. , Shaoxing 312000, Zhejiang, China
    3. Institute of Fire Safety, Shenzhen City Public Safety Technology Research Institute Co. Ltd. , Shenzhen 518046, Guangdong, China
  • Received:2018-10-19 Revised:2019-04-09 Online:2019-07-05 Published:2019-07-22
  • Contact: Dongmei HUANG E-mail:2292453790@qq.com;dmhuang@cjlu.edu.cn

摘要:

为研究点火位置对乳胶泡沫材料水平方向火蔓延规律的影响。搭建小尺寸实验平台,在距离材料中心点0(x1)、3.54 cm(x2)、7.08 cm(x3)、10.62 cm(x4)、14.16 cm(x5)、17.70 cm(x6)位置处点火,研究了试样表面温度、质量损失、火焰高度、火蔓延速度等特性参数的变化规律。结果表明,随着点火位置由材料中心点向边缘点移动,平均火蔓延速度分别为0.24、0.23、0.19、0.31、0.42、0.51 cm·s-1,呈现先减小后增大的规律;x3点火位置时的平均火焰高度较低,燃烧时间较长,平均质量损失速率较低,主要与火蔓延过程中的热量传递方式有关。研究结果显示了乳胶泡沫的火蔓延过程,得到了点火位置对火蔓延的影响规律。

关键词: 乳胶泡沫, 点火位置, 火蔓延, 传热, 安全, 实验验证

Abstract:

A small-size experimental platform was developed to study the effect of ignition position on horizontal flame spread of 2 cm thickness latex foam. The ignition position was 0 (x1), 3.54 cm (x2), 7.08 cm (x3), 10.62 cm (x4), 14.16 cm (x5) and 17.70 cm (x6) from the center point of the material surface. The characteristic parameters, such as surface temperature, mass loss, flame height and flame spread speed were measured during the tests. The results showed that the average flame spread rate is 0.24, 0.23, 0.19, 0.31, 0.42 and 0.51 cm·s-1 for the tests that the ignition position is far from the center point of the material. At the x3 ignition position condition, the average flame height and mass loss rate was lower and the combustion time was longer than the other tests due to the difference of the heat transfer mode. Then the heat transfer mechanism of the combustion process with different ignition position was analyzed.

Key words: latex foam, ignition position, flame spread, heat transfer, safety, experimental validation

中图分类号: 

  • X 932

图1

实验装置示意图和热电偶布置及点火位置"

图2

实验样品温度和质量变化过程"

图3

不同点火位置时乳胶泡沫火焰形态"

图4

表面火蔓延过程示意图"

图5

不同点火位置下乳胶泡沫火焰高度"

图6

不同点火位置条件下火焰高度变化"

图7

不同点火位置下乳胶泡沫的质量变化"

图8

不同点火位置下乳胶泡沫的质量损失速率"

图9

不同点火位置乳胶泡沫材料表面温度分布曲线"

图10

乳胶泡沫表面温度随时间的变化"

图11

火蔓延速率随时间的变化"

图12

火焰蔓延过程传热模型"

1 ChowW K. Assessment on heat release rate of furniture foam arrangement by a cone calorimeter[J]. Journal of Fire Sciences, 2002, 20(4): 319-328.
2 FanH, ChenY, HuangD M, et al. Kinetic analysis of the thermal decomposition of latex foam according to thermogravimetric analysis[J]. International Journal of Ploymer Science, 2016, 2016: 1-7.
3 HuangD M, ZhangM Z, GuoC N, et al. Experimental investigations on the effects of bottom ventilation on the fire behavior of natural rubber latex foam[J]. Applied Thermal Engineering, 2018, 133: 201-210.
4 WangX, ChengX, LiL, et al. Effect of ignition condition on typical polymer s melt flow flammability[J]. Journal of Hazardous Materials, 2011, 190(1): 766-771.
5 黄新杰, 孙金华, 纪杰, 等. 不同外界环境下保温材料表面火蔓延规律研究[J]. 科学通报, 2010, 55(32): 3147-3152.
HuangX J, SunJ H, JiJ, et al. Study on fire spread pattern of insulating material under different external environment[J]. Chinese Science Bulletin, 2010, 55(32): 3147-3152.
6 万维, 孙金华, 李杰. 环境氧浓度对可碳化固体可燃物表面火蔓延的影响[J]. 火灾科学, 2008, 17(2): 73-76.
WanW, SunJ H, LiJ. Flame spread over charring materials: the influence of ambient oxygen concentration[J]. Fire Safety Science, 2008, 17(2): 73-76.
7 王喜世, 廖光煊, 范维澄, 等. 木材表面火蔓延特性的动态测量研究[J].火灾科学, 2000, 9(1): 8-12.
WangX S, LiaoG X, FanW C, et al. Dynamic test study on flame spread characteristics over wood surface[J]. Fire Safety Science, 2000, 9(1): 8-12.
8 齐丽婷, 余永刚. 薄片可燃物火蔓延速率的测量与计算[J]. 热科学与技术, 2004, 3(4): 365-368.
QiL T, YuY G. Measurement and calculation of fire spreading velocity of combustible solids slics[J]. Journal of Thermal Science and Technology, 2004, 3(4): 365-368.
9 ZhangY, SunJ H, HuangX J, et al. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surface[J]. International Journal of Heat and Mass Transfer, 2013, 61(1): 28-34.
10 何学超, 孙金华, 卢国建, 等. 点火位置对弯管预混火焰传播特性的影响[J]. 燃烧科学与技术, 2015, 21(1): 60-64.
HeX C, SunJ H, LuG J, et al. Influence of ignition positions on the propagation of premixed flame in a curved duct[J]. Journal of Combustion Science, 2015, 21(1): 60-64.
11 XiaoH, DuanQ, LinJ, et al. Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube [J]. International Journal of Hydrogen Energy, 2014, 39(16): 8557-8563.
12 肖琳, 张立新, 徐丽艳, 等. 专用K型铠装热电偶制作工艺的研究[J]. 功能材料, 2005, 36(11): 1725-1727.
XiaoL, ZhangL X, XuL Y, et al. The production research for specified armourd K-type thermocouple[J]. Journal of Functional Materials, 2005, 36(11): 1725-1727.
13 魏可臻, 张奇. 热电偶热传导测温中的动态响应时间和误差估计[J]. 测试技术学报, 2007, 21(6): 523-526.
WeiK Z, ZhangQ. Dynamic response time and deviation estimate of thermocouple during heat-exchange temperature measurement[J]. Journal of Test and Measurement Technology, 2007, 21(6): 523-526.
14 王林, 靳红雨, 吕东. 基于MATLAB图像处理技术提取火焰高度[J].消防科学与技术, 2017, 36(3): 366-369.
WangL, JinH Y, LyuD. Detection of flame tip height based on MATLAB image processing technology[J]. Fire Science and Technology, 2017, 36(3): 366-369.
15 JiangL, MillerC H, GollnerM J, et al. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2987-2994.
16 ZhouY, XiaoH, YanW, et al. Horizontal flame spread characteristics of rigid polyurethane and molded polystyrene foams under externally applied radiation at two different altitudes[J]. Fire Technology, 2015, 51(5): 1195-1216.
17 MishraD P, KumarP. Experimental investigation of laminar LPG-H2 jet diffusion flame with preheated reactants[J]. Fuel, 2008, 87(13/14): 3091-3095.
18 江平. 航空煤油池火脉动频率试验研究[J].安全与环境学报, 2016, 16(4): 76-81.
JiangP. Experimental study of the fluctuation frequencies of aviation fuel pool fires[J]. Journal of Safety and Environment, 2016, 16(4): 76-81.
19 WeiseD R, BigingG S. Effects of wind velocity and slope on fire behavior[J]. Fire Safety Science, 1994, 4(4): 1041-1051.
20 LinnR R, CunninghamP. Numerical simulations of grass fires using a coupled atmosphere–fire model: basic fire behavior and dependence on wind speed[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(13): 107-126.
21 ZhangB S, ZhangJ Q, WangX M, et al. Effects of air inlet configuration on forced-ventilation enclosure fires on a naval ship[J]. Fire Technology, 2016, 52(2): 547-562.
22 MouritzA P, MathysZ, GibsonA G. Heat release of polymer composites in fire[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(7): 1040-1054.
23 BabrauskasV, PeacockR D. Heat release rate: the single most important variable in fire hazard[J]. Fire Safety Journal, 1992, 18(3): 255-272.
24 钟委, 霍然, 史聪灵. 热释放速率设定方式的几点讨论[J]. 自然灾害学报, 2004, (2): 64-69.
ZhongW, HuoR, ShiC L. Some discussion on methodology to design heat release rate[J]. Journal of Natural Disasters, 2004, (2): 64-69.
25 QuintiereJ G. Fundamentals of Fire Phenomena[M]. Chichester: John Wiley, 2006:26.
26 黄新杰, 刘伟, 陈功建, 等. 不同宽度及放置角度下聚甲基丙烯酸甲酯的燃烧传热特性[J]. 高分子材料科学与工程, 2017, 33(7): 88-93.
HuangX J, LiuW, ChenG J, et al. Effects of width and incline angle on combustion and heat transfer characteristics of poly[J]. Polymeric Materials Science and Engineering, 2017, 33(7): 88-93.
27 HuangD M, ZhangM Z, ShiL, et al. Fire behaviors of single and laminated natural latex foam[J]. International Journal of Thermal Sciences, 2019, 136: 278-286.
28 周洋. 高原环境中硬质聚氨酯和聚苯乙烯泡沫的火蔓延特性研究[D]. 合肥: 中国科学技术大学, 2014.
ZhouY. Study on flame spread characteristics of rigid polyurethane and polystyrene foama at a high altitude[D]. Hefei: University of Science and Technology of China, 2014.
29 JiangL, XiaoH, ZhouY, et al. Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces[J]. Journal of Fire Sciences, 2014, 32(3): 193-209.
30 张明振, 黄冬梅, 原琪, 等. 不同点火位置时乳胶泡沫火蔓延特性[J]. 过程工程学报, 2018, 18(5): 1029-1036.
ZhangM Z, HuangD M, YuanQ, et al. Flame propagation characteristics of latex foam at different ignition positions[J].The Chinese Journal of Process Engineering, 2018, 18(5): 1029-1036.
31 ZhangY, HuangX, WangQ, et al. Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau[J]. Journal of Hazardous Materials, 2011, 189(1/2): 34-39.
32 DrysdaleD. An Introduction to Fire Dynamics[M]. John Wiley & Sons, 2011: 55-75.
33 RayS R, Fernandez-pelloA C, GlassmanI. A study of the heat transfer mechanisms in horizontal flame propagation[J]. Journal of Heat Transfer, 1980, 102(2): 357-363.
[1] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[2] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[3] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[4] 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471.
[5] 高泽世, 姚元鹏, 吴慧英. 球形容器内石蜡非约束融化特性实验[J]. 化工学报, 2019, 70(7): 2480-2487.
[6] 叶昊天, 董以宁, 许爽, 邹雄, 李振花, 董宏光. 考虑本质安全的换热网络多目标优化[J]. 化工学报, 2019, 70(7): 2584-2593.
[7] 梁梓宇, 万李, 李娟, 周熙宏, 杨冬. 并联双通道内超临界水的脉动传热特性[J]. 化工学报, 2019, 70(7): 2488-2495.
[8] 张朔, 王维, 李强强, 唐宇佳, 董铁有. 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138.
[9] 雷兴国, 王庆锋, 李中. 基于合作博弈的管道外腐蚀多层次灰色动态评价[J]. 化工学报, 2019, 70(6): 2386-2396.
[10] 刘培启, 何昕琛, 陈佳, 郭江涛, 席建宇, 胡大鹏. 锥芯可调型引射技术变工况适应性实验研究[J]. 化工学报, 2019, 70(6): 2252-2258.
[11] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[12] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[13] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[14] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[15] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[2] 范燕平, 王庆印, 杨先贵, 姚洁, 王公应. Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO[J]. , 2009, 17(5): 883 -886 .
[3] 李进龙, 何清, 何昌春, 彭昌军, 刘洪来. Representation of Phase Behavior of Ionic Liquids Using the Equation of State for Square-well Chain Fluids with Variable Range[J]. , 2009, 17(6): 983 -989 .
[4] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[5] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[6] 刘公平, 侯丹, 卫旺, 相里粉娟, 金万勤. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane[J]. , 2011, 19(1): 40 -44 .
[7] 罗明良, 温庆志, 刘佳林, 刘洪见, 贾自龙. Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism[J]. , 2011, 19(1): 45 -51 .
[8] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .
[9] 沈剑, 何潮洪. Isolation and Purification of Triptolide from the Leaves of Tripterygium wilfordii Hook F[J]. , 2010, 18(5): 750 -754 .
[10] 郭秀娟, 王树荣, 王琦, 郭祚刚, 骆仲泱. Properties of Bio-oil from Fast Pyrolysis of Rice Husk[J]. , 2011, 19(1): 116 -121 .